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Abstract

Conventional Warehouse management systems are dependent on humans for the completion
of warehouse tasks such as inventory management, transporting goods, etc. which consumes a
lot of time, leading to poor productivity and can even lead to safety and health concerns for the
people working there. To tackle such problems and keep up with the competition in terms of
productivity levels, Autonomous mobile robots (AMR) are currently being introduced in many
intralogistics operations in the warehouses. Their advanced hardware and control software
allow autonomous operations in dynamic environments. Compared to an automated guided
vehicle (AGV) system in which a central unit takes control of scheduling, routing, and
dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with
other resources like machines and systems and thus decentralise the decision-making process.
Decentralised decision-making allows the system to react dynamically to changes in the system
state and environment.

This identifies a real-world problem of a conventional warehouse management system, that has
a lot of features, such as shelves and introduces an Autonomous Mobile Robot named TC200,
that autonomously moves within the warehouse workspace while avoiding dynamic and static
obstacles and reaches the shelf location. Then it moves holonomically about a feature to reduce
trajectory time and which uses a fine-tuned robust computer vision algorithm to detect different
coloured objects (yellow and red storage bins in this case) within the warehouse, via a camera
mounted on the TC200 AMR. The main aim of TC200 is to move autonomously within the
given warehouse and detect the bins and provide some statistical information regarding the
objects to the user. The future scope of this project involves a manipulator which can be
mounted on the robot, to collect these detected bins, and then to move them from one place to
another, thereby decreasing the transportation time of objects and increasing the overall
productivity of the warehouse.
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Chapter 1: Introduction

1.1 Background

Warehouses are large buildings used by manufacturing companies, importers, exporters,
wholesalers, and many other businesses where the employees receive, sort, stock, and prepare
goods for distribution. The two types of warehouses are Traditional/Conventional Warehouses
and Smart/Modern warehouses.

1.1.1 Traditional/Conventional Warehouses

Traditional warehouses have long been the cornerstone of supply chain operations, serving as
storage facilities for goods before distribution. These warehouses are typically characterised
by manual processes and labour-intensive operations. Warehouse workers are responsible for
tasks such as receiving, inventory management, order picking, packing, and shipping. While
traditional warehouses have served businesses for many years, they come with inherent
limitations and challenges.

Challenges faced by Traditional Warehouses
o Full Dependency on Manual Labor

One of the primary challenges of traditional warehouses is the reliance on manual
labour. Finding and retaining enough human workers to meet the demands of the
warehouse is very hard in industries where the work can be physically demanding and
less appealing, and this leads to very high labour costs. Human involvement in various
tasks increases the likelihood of errors and inefficiencies.

o Decreased Productivity

Order fulfilment in traditional warehouses can be time-consuming and prone to errors.
Warehouse workers manually pick items from shelves, pack them, and prepare them
for shipping. These manual processes are susceptible to mistakes, leading to delays in
order processing and potential customer dissatisfaction. Moreover, the lack of
optimised routing and warehouse layout can cause inefficient movement within the
warehouse, resulting in wasted time and effort.

o Inventory Management:

Manual inventory management processes, such as manually recording item counts and
tracking stock movement, are prone to inaccuracies and can result in discrepancies
between actual inventory and recorded stock levels. This can result in stockouts, where
products are out of stock when customers want to purchase them, or overstocking,
where excess inventory ties up capital and increases carrying costs. Manual processes
can be slower and less efficient than automated ones. This can lead to longer lead times,
slower order processing, and higher operational costs.



e Scalability

Traditional warehouses may face challenges in adapting to changing business needs
and scaling operations. The infrastructure and layout of traditional warehouses are
typically rigid, making it difficult to accommodate growth or changes in product
assortments. Expanding storage capacity or introducing new processes may require
significant time and resources.

1.1.2 Evolution of Smart/Modern Warehouses

The meteoric rise of eCommerce and the popularity of online platforms like Amazon, the
supply chains are challenged to deliver products faster while keeping customer costs low, all
while offering same-day or next-day delivery. This fulfilment is not possible with traditional
warehouse management systems. So, smart warehouses are evolving more than ever.

Smart warehouses integrate a range of technologies to streamline operations and enable
intelligent decision-making. Automation plays a pivotal role, with robotics and machinery
taking over repetitive and labour-intensive tasks. This automation reduces reliance on manual
labour and enhances the speed and precision of warehouse operations.

An AMR, or Autonomous Mobile Robot, is typically used as part of this automation. It is a
type of robot designed to operate and move autonomously without human intervention. These
robots are equipped with sensors, cameras, and advanced navigation systems that allow them
to perceive their environment, make decisions, and navigate through spaces safely and
efficiently. These robots are advanced enough that they can work together with humans to
make operations better and more efficient. They can do things like carry heavy stuff and travel
long distances which humans are not capable of doing for extended periods of time, which
allows humans to do other important tasks.

Benefits of Smart Warehouses over Traditional Warehouses
e Increased Efficiency

Smart warehouses optimise order fulfilment and contribute to increased productivity
through automation. Robotic systems and AMRs automate the picking, packing, and
sorting operations, significantly reducing processing time and errors. Optimised routing
algorithms and advanced warehouse layouts further enhance efficiency, ensuring that
orders are picked, packed, and shipped with precision and speed.

e Inventory Management

Smart warehouses revolutionise inventory management through real-time tracking and
visibility. Automated systems, such as barcode scanners and RFID tags, enable accurate
and efficient inventory control. With instant updates on stock levels and locations,
businesses can make informed decisions to prevent stockouts or overstocking,
improving customer satisfaction and reducing carrying costs.



o Scalability and Flexibility

Smart warehouses offer greater scalability and flexibility compared to traditional
warehouses. Modular designs allow for easy expansion or reconfiguration to
accommodate changing business needs. These warehouses can seamlessly integrate
with other systems, such as ERP or TMS, enabling end-to-end visibility and smooth
data exchange across the supply chain.

e Increased Safety

Smart warehouses prioritise worker safety and ergonomics. Collaborative robots (co-
bots) work alongside human workers, reducing physical strain and improving safety.
Al-powered safety systems can detect and prevent potential accidents. Overall, smart
warehouses create safer working environments, improving employee well-being and
productivity.

Structure of the Report

The report starts with an Abstract that offers a brief but comprehensive glimpse into the
project's scope, significance, and outcomes. The table of contents is then listed, which provides
a detailed sectional view of the topics that are going to be covered in this report. After that,
comes the Chapter 1 - Introduction, which categorises warehouses into Traditional and
Modern, and then states the major problems faced by Traditional and how the Modern one
solves those problems. Then, the problem statement is stated. Chapter 2 is the Literature
Review that highlights and showcases the similar solutions to the problem statement that are
currently being implemented in the real world. Taking inspiration from the Literature review,
a solution was proposed for the problem statement by providing a detailed description of the
AMR that was chosen for the specific use case, i.e., TC200, taking into consideration its
locomotion and path planning techniques. Chapter 3 starts with the use case overview and then
talks about the concepts behind the implementation of the proposed solution by dividing the
solution into two main features of Autonomous Navigation and Object Tracking and then
stating the system architecture and the algorithms behind both the features. Further in Chapter
3, the methodology of the Computer Vision Algorithms that are used for robot perception,
which include the pipeline of the Deep Learning Model, Dataset generation, Model training
and finally the model deployment on TC200 is stated. Coming to Chapter 4, find the
implementation of the modules that were described in Chapter 3 for both the Autonomous
Navigation and Object Tracking features are described. Once the implementation was
successful, the validation of the implemented modules for both the features was the next step,
which is explained and showcased with real data, in Chapter 5. This validation involved the
use case validation, the validation of the Object Detection and Instance Segmentation Model,
the validation of Auto Annotation, the validation of Deployment and the validation of laser
scan data of TC200. Once the validation was approved, the end goal of the project was reached
and all the content described in Chapters 1-5, was concluded at the end of the report, along
with the Citations and Appendix.
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1.2 Problem Statement for the Project

Given is a Traditional Warehouse Setup with a lot of features like shelves, boxes, garbage bins,
etc. The shelves contain different coloured storage bins as well as other objects and the
warehouse task involves the detection of certain objects (red- or yellow-coloured bins in this
use case), in the whole warehouse environment.

The current warehouse management system depends largely on manual labour for the required
warehouse tasks including the sorting, segmentation and transportation of these colour-coded
storage bins. The worker would move along all the shelves in the warehouse and would look
for the desired coloured bins. On detecting the required bins, the worker would then collect
them and transport them to the desired location. Due to large dependency on manual labour,
this process is very time-consuming, inefficient and can lead to large human errors, thereby
resulting in lower productivity.

Therefore, the main aim of the project is to increase the overall productivity of the warehouse

by decreasing process times, decreasing the large dependency on manual labour and decreasing
the errors that were very prominent in the case of manual task management.
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Chapter 2: Literature Review

2.1 Current Implementation of AGVs and AMRs in Warehouses

In [1] the author talks about the work that was carried out in an automotive company. The main
objective was to increase the productivity of the last workstation of an assembly line by
implementing an AGV System to transport finished goods to the warehouse. The ultimate goal
was the elimination of human-operated transport vehicles like forklifts from the production
area, boosting not only flexibility but also workplace safety. He talks about the incorporation
of Lean Manufacturing to eliminate waste and meet customer demands for innovative, cost-
effective products and the implementation of AGVs to automate material handling, optimise
processes and reduce waste. According to the author, implementing AGV systems enhances
efficiency and aligns with evolving customer expectations. The implementation of AGV
technology yielded significant benefits. It eliminated the manual transport of heavy loads by
operators and reduced excess containers at workstations, thereby improving ergonomics,
safety, and productivity. Workers no longer needed to handle containers 100 to 150 times per
shift. Over a full shift, this translated to (i) eliminating the manual transport of 36 to 39 tons of
material by workers, (ii) reducing worker walking distance by 1.75 to 2.6 kilometers, and (iii)
saving 50 minutes of travel time. With enhanced safety features, accidents between personnel
and AGVs were less likely, contributing to overall workplace safety. Additionally, the risk of
damaged components during transport was minimised. The author in [2] highlights the
advancements in technology that came with the introduction of AMRs and how they are a huge
step forward over the current implemented AGVs. The research done by the author in [2]
explains that Autonomous Mobile Robots (AMRs) have evolved to meet the growing demand
for flexibility in various industries. Unlike Automated Guided Vehicles (AGVs), which are
limited to repetitive tasks, AMRs excel not only in navigation but also in offering diverse
services. They can handle tasks beyond material transportation, including patrolling and
cooperating with human operators. With the ability to make independent decisions, AMRs
provide adaptable solutions. He concludes by stating that AMR technology advances enhance
operational flexibility, productivity, quality, and, occasionally, cost-efficiency. Rapid
implementation is feasible, especially where suppliers have expertise. However, quantifying
AMR benefits and optimising deployment remains challenging. Simultaneously addressing
multiple decision variables like vehicle numbers, zoning, service points, scheduling, and path
planning enhances understanding and promotes balanced decision-making. Meanwhile, the
author in [3], extends the scope of AMRs by integrating Internet of Things (such as RFID,
smart sensors, etc.) and Cyber Physical Systems, that connect via the Internet to communicate
with each other. According to the author, RFID Technology is one of the most used loT
technologies in the warehouses. However, he states that Implementing advanced automation
systems like warehouse robots with 10T technologies demands substantial investments and
meticulous strategic and tactical planning. The future holds the promise of widespread adoption
of highly automated systems that will fundamentally transform warehouse operations. Given
the evolving warehousing industry landscape, research focused on upgrading existing
warehouse systems should receive increased attention and consideration. Also, the author
highlights the importance of Warehouse Sustainability by considering factors like power
management, the design and operation of the logistics chain and other human factors. He sums
it all up by concluding that AMRs and smart technological advancements are the next steps for
any traditional or semi-modern warehouse in order to keep up with the rapid order fulfilment
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and customer demands, due to the meteoric rise of Ecommerce and competition from other
industries.

In conclusion, after going through the various publications, stating the current implementations
of Robot Technologies such as AGVs and AMRs, it can be said that the introduction of such
robot technologies have a significant boost on the overall productivity of a warehouse when
compared to a traditional warehouse, that is completely dependent on Manual labour for the
completion of warehouse tasks. AGVs and AMRs benefit traditional warehouses by
automating tasks, reducing manual labour, enhancing safety, and boosting efficiency. AGVs
handle repetitive tasks, while AMRs offer flexibility and versatility. Both technologies help
warehouses adapt to modern demands, ensuring competitiveness, faster order fulfilment, and
sustainability. The integration of Cyber-Physical Systems and IoT Systems such as RFID
Scanners, enhance the use case and scope of AGVs and AMRs in warehouses, even more.

Therefore, most of the world has moved to a modern warehouse, from a traditional warehouse
due to the competitiveness, sustainability and increased productivity that it offers, and this is
the way to go, if an Industry wants to survive in this competitive environment. The project
draws motivation from the facts stated above and intends to implement a solution by taking
into account the capabilities of AMRs in the context of warehouse management.

2.2 Computer Vision in Industrial Automation

Computer vision is a field of computer science that deals with the extraction of information
from digital images or videos. It is a type of artificial intelligence (Al) that allows computers
to "see" and understand the world around them. It is a rapidly growing field with applications
in a wide variety of areas, including automation, robotics, medical imaging, and self-driving
cars.

2.2.1 Traditional vs Deep Learning method of Computer Vision
i. Traditional Methods of using CV in Industrial Automation:

Historically, computer vision in industrial automation relied on conventional
techniques like image processing, feature extraction, and rule-based algorithms. These
methods often required extensive manual engineering, making them labour-intensive
and limited in their adaptability to complex environments. For instance, in quality
control processes, traditional computer vision systems employ techniques like edge
detection and colour-based segmentation to identify defects in manufactured goods.
While effective in certain controlled settings, these methods struggled with variability
in lighting conditions, object orientations, and occlusions. As a result, their application
was restricted to specific use cases within industrial automation.

ii. Deep Learning-based Computer Vision for Industrial Application:

The emergence of deep learning has revolutionised the field of computer vision,
particularly in industrial automation. Deep learning models, specifically Convolutional
Neural Networks (CNNs), have demonstrated exceptional capabilities in tasks such as
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object recognition, segmentation, and anomaly detection. In industrial contexts, CNNs
have been leveraged for tasks like automated inspection, where they excel in learning
complex patterns and features directly from raw image data. For example, in
manufacturing, CNNs have been deployed to inspect products for defects, achieving
higher accuracy rates compared to traditional methods. Moreover, the versatility of
deep learning allows for transfer learning, enabling models trained on large datasets to
be fine-tuned for specific industrial applications. This adaptability has significantly
expanded the scope of computer vision in industrial automation.

2.2.2 Potential of Deep Learning in Warehouse Automation

In an Industrial set-up, traditional methods of Computer vision are still highly relevant in many
cases [4], such as when there is a small amount of training data available or when the task is
computationally expensive. However, the implementation of deep learning models in industries
is increasing exponentially [5]. This is especially true in warehouse settings, where the practical
applications of deep learning-based computer vision are vast [6].

e Object Detection and Tracking

Obiject Detection identifies objects in an image or video frame, labelling them with a
class and bounding them with a box. It involves following these objects over
consecutive frames, maintaining their identity and predicting their future positions. This
technology is valuable in warehouses for locating and monitoring products, pallets, and
robots, leading to enhanced efficiency in tasks like order picking and inventory
management.

e Scene Understanding

This can be used to understand the layout of a warehouse and the relationships between
objects. This information can be used to plan the movement of robots and other
equipment and to optimise the use of space in a warehouse.

e Quality Control

This can be used to inspect products for defects or damage. This information can be
used to improve the quality of products and to reduce the number of returns.

e Inventory Management

It can be used to track the inventory levels of products in a warehouse. This information
can be used to ensure that the right products are in the right place at the right time.

e Safety Monitoring

This can be used to monitor the activities of workers and robots in a warehouse to
prevent accidents.

Different Deep Learning Models

When it comes to selecting the right Deep Learning model for object identification in Computer
Vision (CV), a few key aspects come into play.

Firstly, the design of the model, known as its architecture, holds great importance. Models like
Convolutional Neural Networks (CNNSs) excel at extracting details from images, making them
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highly valuable for CV tasks. It's also crucial to strike a balance between speed and accuracy,
especially in fast-paced scenarios like robotics or augmented reality. Additionally, if your task
involves pinpointing specific areas or objects in an image (known as semantic segmentation),
a model adept at predicting masks becomes essential. Considering the depth of the network is
also important; deeper networks can capture more complex patterns, but they may require more
data and computing resources. By weighing all these factors, you can select a model that aligns
with the specific needs of your CV application, ensuring optimal performance and accuracy.

Various models used for Object identification with key features comparison is in the Table 1.

Feature YOLOVS SSD Faster R-CNN Mask R-CNN
Architecture Single-shot Single-shot Region-based Region-based
detection multi-box convMask R- convolutional
detector CNNolutional neural network
neural network | with mask branch
Speed vs. Fast with good | Slower with | Slower with high | Slow with highest
Accuracy accuracy high accuracy accuracy accuracy
Real-time Object Object Object detection, Instance
Applications detection, detection in instance segmentation
instance high- segmentation
segmentation resolution
images
Mask Available in Not available Not available Available
Prediction YOLOvV8
Number of Single-stage Single-stage Two-stage Three-stage
Stages
Key Focus Speed and Balanced Accuracy and Accuracy and
good accuracy speed and detailed object instance
accuracy detection segmentation
Resource GPU/CPU Less High-End GPU High-End GPU
Requirements Demanding
Real-Time Yes Yes Yes (with GPU) Not Ideal
Processing
Community Active Active Active Active
Support

Table 1: Comparison of popular Single and Two Stage Object Detectors
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Yolov8 vs other Yolo Versions

In this comparison, one can assess YOLOVS in contrast to previous YOLO versions, with a
focus on aspects such as speed, accuracy, and features.

e YOLOVS has better accuracy than previous YOLO models.

e The latest YOLOVS8 implementation comes with a lot of new features, especially the
user-friendly CLI and GitHub repo is noteworthy.

« It supports object detection, instance segmentation, and image classification.

e The community around YOLO is incredible, just search for any edition of the YOLO
model and one can find hundreds of tutorials, videos, and articles.

e Training of YOLOvV8 will be probably faster than the other two-stage object detection
models. [20]

The YOLOvV8 model family offers various models based on their size. Here is a comparison
of the different models [7] in Fig.1

, - Speed Speed
Model size | mAP CPUONNX = Al00TensorkT =~ Params = FLOPs
(pixels) 50-95 (M) (B)
(ms) (ms)
YOLOV8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 449 1284 1.20 11.2 28.6
YOLOv8Bm | 640 50.2 234.7 1.83 259 789
YOLOvSI 640 52.9 375.2 2.39 43.7 165.2
YOLOvV8x 640 53.9 4791 3.53 68.2 257.8
e mAP"¥ values are for single-model single-scale on COCO val2017 dataset.
Reproduce by yolo val detect data=coco.yaml device=0
e Speed averaged over COCO val images using an Amazon EC2 P4d instance.
Reproduce by yolo val detect data=cocol28.yaml batch=1 device=0/cpu

Fig. 1: Comparison of Yolov8 Model based on size

2.2.3 Why Instance Segmentation?

o The difference between instance segmentation and object detection techniques is that
object detectors only detect objects in images. Conversely, instance segmentation
solutions provide a fine-grained understanding of image data by defining and
classifying each instance present in visual input. [21]
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e Robust to occlusion: Segmentation is more robust to occlusion than object detection.
This is because segmentation does not rely on bounding boxes, which can be easily
occluded by other objects in the image. [22]

« Accurate for irregular objects: Segmentation is more accurate for irregular objects than
object detection. This is because segmentation does not rely on bounding boxes, which
can be difficult to fit around irregular objects. [21]

o Precise Object Localization: Segmentation provides pixel-level accuracy by classifying
each pixel in an image as belonging to a specific object class or background. This
precise localization is especially useful when you need to precisely outline the
boundaries of objects in an image. [23]

2.2.4 Challenges in using Computer Vision

Despite the promising potential of computer vision in warehouse automation, several
challenges persist. One significant obstacle is the need for robustness in real-world warehouse
conditions. [5] and [6] discusses the key challenges in using Computer Vision algorithms such
as:

Variability in Environmental Conditions
Complex Object Occlusions:

Generalisation to New Object Types
Real-Time Processing Requirements
Adaptability to Dynamic Environments
Large-Scale Data Acquisition and Annotation

ogakrwdE

2.3 Proposed Solution

The major drawback of the given problem statement is with its Warehouse Management
System, which is largely dependent on manual labour. To achieve the aim of increasing the
overall productivity of this warehouse, the implementation of modern practices and converting
this traditional warehouse into a Smart/Modern warehouse was a must.

To do so, a comparison between the currently implemented Automation technologies such as
AMRs or AGVs was conducted, and then the best solution to this Traditional Warehouse
Management System, which would significantly decrease the task completion time was
decided, which would lead to fewer errors and would increase the overall Warehouse
productivity. The factors used for comparison between AMRs and AGVs were:

« Navigation Capabilities

AMRs use LIDAR, cameras, and sensors to navigate and adapt to changing
environments. They can create maps of their surroundings in real time and plan their
routes dynamically whereas AGVs typically rely on fixed infrastructure, such as
magnetic tape, wires, or QR codes, for navigation. They follow predefined paths and
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require a structured environment to operate efficiently and would fail to function in case
of change in the warehouse environment.

Flexibility to changing Environment

AMRs are highly flexible and adaptable. They can navigate around obstacles, change
routes on the fly, and handle dynamic layouts. This flexibility makes them suitable for
warehouses with frequently changing inventory or layouts. On the other hand, AGVs
are less flexible and require a more structured and predictable environment. Any
changes in the warehouse layout may necessitate updates to the physical guidance
system.

Scalability

AMRs are scalable, and you can easily add or remove robots to match changing
demand. They can also work collaboratively, making it easier to adapt to varying
workloads, whereas, expanding an AGV system may involve additional infrastructure
installation and adjustments, which can be less straightforward than adding AMRSs. [8]

Safety

AMRs are equipped with advanced safety features, such as obstacle detection and
collision avoidance systems, which make them safer to operate around humans and
other equipment. AGVs can be safe when used in controlled environments but may
have limitations in terms of safety features compared to AMRs as they don't have an
intelligence system and in case of an obstacle, it will wait for help, instead of finding a
way out on its own. [9]

Taking inspiration from the Literature Review mentioned above, considering the shortcomings
as well as benefits of the currently implemented techniques, and then comparing both AMRs
and AGVs, the solution to integrate an AMR with this Traditional Warehouse was chosen
because it was required not to restrict the solution to the current warehouse layout and that the
solution will be flexible to future changes as well as be scalable.

Objectives of the Proposed Solution

Navigating autonomously within the warehouse, while avoiding dynamic as well as
static obstacles.

Moving Holonomically across a feature such as a long shelf, and using Robust
Computer Vision Algorithm via the camera to detect required coloured bins from that
feature.

Pick up the detected object and place it in a desired location using a Manipulator (future
scope of the project).

Scalability of the Proposed solution, in case the number of features or the layout of the
warehouse is changed in the near future.

18



2.4 The TC200 Autonomous Mobhile Robot

2.4.1 Description

The Autonomous Mobile Robot utilised in this project is the TC200 by TECDRON Robotic
Systems, based in France. This robot is a versatile and entirely customizable platform
specifically tailored for educational and training purposes. Particular emphasis was placed on
the TC200 due to its implementation of mecanum wheels, also known as Swedish wheels or
omnidirectional wheels. This feature endows the robot with holonomic motion capabilities,
making it exceptionally well-suited for tasks within confined spaces with limited manoeuvring
room. Furthermore, the TC200 offers the flexibility to operate with a differential drive
configuration if the need arises.

Notably, the TC200 is equipped with mounting provisions and compatibility for articulating
robots on its top platform, including models such as the Kuka LBR iiwa, Universal Robot
UR10, and Techman Robot TM12/TM14. Although the integration of a mobile manipulator is
currently beyond the scope of this project, the capability of this has been proactively accounted
for, in the future endeavours. This platform can accommodate a substantial payload of up to
120kg, further enhancing its versatility.

The TC200's locomotion is powered by four brushless electric motors, each equipped with
individual electromagnetic brakes. This configuration enables the robot to achieve a maximum
speed of 7.24 kph while delivering a formidable torque of 280 Nm. Notably, each motor is
outfitted with a high-resolution 2048 ppm encoder, facilitating precise localization and
mapping due to its closed-loop operation.

For programming and interfacing, the Robot Operating System (ROS) was used, which
provides a robust and highly adaptable software framework. ROS empowers us to enable
various autonomous navigation and computer vision functions tailored for industrial
applications. However, it's crucial to note that the TC200's software and hardware functions
are entirely dependent on ROS. Consequently, a meticulous bit-for-bit external backup to
mitigate the risk associated with the potential corruption or unitability of the ROS environment
has been implemented.

Autonomous navigation, a critical aspect of the project, necessitates accurate environmental
perception. To achieve this, employment of a pair of Hokuyo LIDARS was done, enabling
comprehensive scanning and map-building capabilities. Additionally, the TC200 boasts a
remarkable operational endurance, capable of running continuously for six hours, thanks to its
51.1V 74.1Ah battery. The TC200 stands as a robust and rugged robotic platform ideally suited
for warehouse management applications, aligning seamlessly with the objectives of this
specific project [10].

We additionally connected a camera to this AMR for the implementation of Computer Vision
Algorithms for the detection of different coloured bins on the shelves of the warehouse and for
extending the future scope of the project, where this camera can be used for object detection
and other applications. The task of transportation of the detected objects throughout the
warehouse, to different locations, is a direct extension to the proposed solution and may come
under the future scope of this project as it was not touched upon in this particular project, due
to time and other constraints.
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Fig. 2: TC200 Modular Robot

2.4.2 Locomotion

The TC200 robot uses mecanum wheels, which are a specialised type of omnidirectional wheel
commonly used in robotics and industrial applications. They feature a unique design with
multiple rollers mounted at an angle to the wheel's rotation axis. This configuration allows
mecanum wheels to achieve omnidirectional movement, meaning they can move a vehicle or
robot in any direction without the need for complex steering mechanisms.

In industrial applications like warehouse management and robotics, mecanum wheels offer
several advantages. Their omnidirectional mobility allows for precise and agile movement in
tight spaces, making them ideal for navigating crowded warehouse aisles or confined
manufacturing environments. They enhance the efficiency of material handling and goods
transportation by enabling robots to move sideways, diagonally, and spin on the spot.

Although some draw do consist, such as reduced load capacity, limited traction on certain
surfaces, and increased complexity in control algorithms. Moreover, they tend to be more
expensive and less energy-efficient than traditional wheels, and their rollers can wear over time,
potentially requiring maintenance. However, mecanum wheel-equipped robots excel in tasks
such as autonomous inventory management, goods delivery, and assembly line operations,
where manoeuvrability and adaptability to changing layouts are critical. Their versatility and
ease of control make them valuable tools for improving productivity and automation in
industrial settings. Hence, it is perfect for this use case.
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2.4.3 Path Planning

Autonomous navigation in holonomic robots like the TC200, which possess the capability to
move in any direction without the need for additional rotation, relies on the use of planning
algorithms. Planners are software systems that generate a sequence of actions to guide a robot
from its current state to a desired goal state.

Planners are commonly categorised into two types: global and local planners. Global planners
are responsible for charting an optimal path from the robot's current position to the goal based
on pre-existing knowledge of the environment and static obstacles. They employ traditional
graph search algorithms and necessitate a precise and accurate map for representing
environmental features. However, they do not take into account the robot’s dynamics or sensor
uncertainties. Consequently, while they can provide an initial optimal path based on known
environmental data, they may not be adaptable to sudden changes or unforeseen obstacles [11].

On the other hand, local planners come into play by dynamically adjusting the initial plan
generated by the global planner in real time. They manage the robot's driving dynamics and
resolve minor conflicts, such as avoiding dynamic obstacles. Local planners generate both a
trajectory and a velocity profile, which are then transmitted to the robot's actuators. These local
planners play a vital role in ensuring safe navigation, particularly in dynamic environments like
warehouses or factory floors [12].

In the context of ROS, several local planners tailored for holonomic robots were explored.
Notably, the "base_local_planner" package within ROS offers parameters specifically designed
for holonomic robots, enabling them to leverage their omnidirectional movement capability.
Different local planners exhibit varying trade-offs, including computational demands and
processing times [13].

The base_local _planner operates by continuously assessing the robot's immediate
surroundings, considering factors such as the current robot pose, the global path, and the
sensor-derived map of obstacles. Its primary objective is to compute a velocity command that
directs the robot safely toward its goal while avoiding collisions with obstacles. Moreover, its
ability to generate trajectories that exploit the full range of motion available to holonomic
platforms is what makes it especially useful for this project [14].

At the heart of the base_local_planner lies the Dynamic Window Approach (DWA), a dynamic
trajectory optimization algorithm. DWA operates by sampling velocities within the robot's
control space, encompassing linear and angular velocities. Each sampled velocity is evaluated
through a forward simulation, predicting the robot's trajectory over a short duration. The critical
decision-making step is the scoring mechanism, where trajectories are assigned scores based
on proximity to obstacles, alignment with the global path, distance to the goal, and speed.
Trajectories leading to potential collisions are promptly discarded, leaving behind the trajectory
with the highest score as the chosen path. This trajectory's corresponding velocity commands
are then transmitted to the TC200's mobile base, instructing it on how to navigate effectively
[15].
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The choice of base_local_planner, specifically leveraging the DWA algorithm, is motivated by
its suitability for holonomic robots like the TC200. It harnesses the robot's omnidirectional
movement capabilities to swiftly and safely navigate complex environments. Furthermore, its
integration within ROS ensures seamless compatibility with other system components,
facilitating a robust and coherent autonomous navigation framework.

In terms of global planning, NavFn planner was employed, which offered a swift, interpolated
navigation function that can generate plans for a mobile base. This planner operates on a
costmap to determine the most cost-effective route from a starting point to an endpoint within
agrid.

The navigation function is computed using Dijkstra's algorithm, with potential future support
for an A* heuristic. NavFn also provides a ROS wrapper for the NavFn planner, adhering to
the nav_core::BaseGlobalPlanner interface as specified in nav_core.

The choice of NavFn as the global planner is driven by its efficiency and effectiveness in path
planning, particularly for holonomic robots. This attribute makes it exceptionally useful in
intricate environments where the robot may need to navigate around obstacles or through
narrow passages, such as warehouses and factory floors.

NavFn operates within a ROS namespace specified during initialization and adheres to the
nav_core::BaseGlobalPlanner interface found in the nav_core package. It publishes the most
recently computed plan by NavFn each time the planner calculates a new path, primarily for
visualisation purposes [16].
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Chapter 3: Methodology

3.1 Use Case Overview

A typical warehouse interior is given in Fig. 3 where there are some shelves containing
materials and some random boxes placed. In the context of typical inventory
management/inventory tracking, in order to get a desired object from the shelf, a warehouse
worker (human) will have to go to the desired shelf and look for the object. For a larger
warehouse, this implies that the time complexity increases as there will be more workers
carrying out similar tasks. This results in an unorganised way of work which is inefficient
resulting in more time and resources.

Fig. 3: Use Case Environment for the Concept

In Fig. 3, the schematic view of a shelf is given in the circular image at top. It can be seen that
different types of objects are placed on the shelf. The goal is to use the TC200 robot to find
objects which are of interest to the warehouse worker. The robot is placed at a parked position
P. When the warehouse worker needs to track/find an object of interest from the shelves, the
robot helps to ease the task by going to the shelves marked with numbers (1...5) autonomously
and then looking for the desired object. This saves time for the worker and also a co-
dependency between the robot and human is established. The operation of the robot can be
visualised in Fig. 4.
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Fig. 4: Operation of the Robot

The robot starts from the parked position and then autonomously navigates to the shelf point
1. After it reaches there, it starts moving parallel to the shelf and simultaneously searches for
the desired objects. Whenever an object is found, the robot stops momentarily before
continuing again along the shelf. This process continues until the robot has reached the shelf
end. After that, the robot moves on to the next shelf autonomously and performs the
functionalities again. The process of navigating to a shelf autonomously and then searching for
the objects along that particular shelf until reaching the end of that shelf can be regarded as a
task. After the completion of all tasks, the robot returns to the parked position using
autonomous navigation.
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Based on the specific use case application, the two main features are:

Autonomous Navigation:

This feature allows the robot to autonomously navigate between two given map coordinates
while avoiding obstacles. This is done using the autonomous navigation function which takes
the destination coordinates as inputs and then uses a global planner to plan a route to the
destination coordinate. After that, the module employs a local planner to execute the global
path while avoiding both dynamic and static obstacles. The Autonomous Navigation is also
kept as a separate functionality to allow the robot to navigate to any random location on the
map. This function is helpful to determine the shelf locations which will be further discussed
in Chapter 4: Implementation.

Object Tracking:

The primary objective is to find objects of interest from a shelf. The shelf could be located at a
certain location in the warehouse. The robot is at the parked position. Therefore, at first, the
robot employs the Autonomous Navigation to ensure that the robot autonomously navigates to
the starting point of the shelf. The shelf starting points are provided by the robot operator which
acts as the input of this feature. After the robot has reached the shelf, the Object Tracker feature
starts and moves the robot holonomically such that the robot is perpendicular to the shelf and
is simultaneously moving parallel. The Object Tracker feature also employs some computer
vision algorithms to find the objects on the shelf.

The motion of the robot is put to a halt if either of the three scenarios mentioned below occurs:

1. The Robot finds an object on the shelf and hence the holonomic motion is stopped
momentarily to further assess information.

2. The robot detects an obstacle in the direction of holonomic motion and stops
immediately. The motion will continue only when the obstacle has been cleared.

3. The robot reaches the end of the shelf and stops.

In the next segment, which is the system architecture, a more detailed explanation of each
feature along with its sub-modules and their functionalities has been presented.

3.2 System Architecture

The features of the proposed concept design for the use-case have been further divided into
sub-modules and are presented in Fig. 5, giving a topological idea of the important modules
that are used.
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Fig. 5: System Architecture for Concept Design

3.2.1 Parameter files

User-defined files that contain the “directions” for the robot to read and execute. The parameter
files contain the information with respect to each shelf in the warehouse. The robot is provided
with these files as input which is then read by the “Task Scheduler”. The “Task Scheduler”
executes the tasks in a sequential order. More details about the structure content of the
parameter files have been provided in Chapter 4: Implementation.

3.2.2 Autonomous Navigation

To accomplish this goal, the robust features offered by ROS (Robot Operating System) were
leveraged. For autonomous movement from one point to another, the robot employs a
navigation stack, with “MoveBase” [17] serving as its central component as shown in Fig. 5.
“MoveBase” integrates multiple algorithms and modules to present a unified navigation
interface.
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Fig. 6: move_base node overview

Fig. 5 provides an overview of the move_base node and its interplay with various components.
Within MoveBase, there is a local planner that interfaces with diverse robot localization tools
such as AMCL and different array of sensors in IMU (Inertial Measurement Unit for precise
robot positioning and odometry data. Additionally, the local planner plays a crucial role in
guiding the robot around obstacles encountered along the way to its intended destination.
Furthermore, as previously explained the “global costmap” component receives map data from
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the “map_server”, aiding the robot in charting its course to the designated goal location. The
global planner operates in accordance with the information contained in the “global costmap”,
assisting the robot in its journey to a specific destination.

Global and local planners play a crucial role in performing autonomous navigation by obstacle
avoidance. A global planner is needed to find a feasible route that considers the overall structure
of the environment. For that, global planners use different path planning algorithms like the
grass-fire algorithm, Dijkstra Algorithm, A* algorithm, and many more. The local planner
operates at a lower level and is responsible for making real-time adjustments to the robot's path
to ensure safe and collision-free movement. It considers the robot's immediate surroundings
and dynamically adapts the path as necessary. It is responsible for generating specific control
commands like velocity and steering by avoiding dynamic obstacles or unexpected changes
that may not be considered in the global planner. This helps robots to navigate around sudden
threats.

As a local planner, the robot uses a DWA (Dynamic Window Approach) planner which allows
the better holonomic motion of the robot and as a global planner, Navfn is used which utilizes
the Dijkstra path planning algorithm as this planner strictly adheres to the global plan and
leading to accurate positioning and navigation.

Hence, the robot gets the information (x,y, and 0) from the user according to the robot
coordinate system and moves at the prescribed location in the environment autonomously by
avoiding obstacles.

3.2.3 Object Tracker

As discussed in the use case overview, the robot reaches the shelf start location by Autonomous
Navigation based on the provided data of (x,y, and 0) by the user. The process overview of the
object finder function is depicted and explained in Fig. 6:

Objective Based Algorithm

Computer Vision
Algorithm

Pre- > ——> Actuation

Frocessing

Y

Perception

Parallel movement

___________________________

Fig. 7: Fundamental logic of the Object Tracker

3.2.4 Perception

A pair of perception sensors integrated into the robotic system, were utilised for perception
purposes. The initial sensor in the setup is a LIDAR sensor which provides one-dimensional
data allowing us to ascertain the proximity of objects within the robot surroundings and the
second sensor is a camera that captures the images of the real environment.
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3.2.5 Pre-Processing

These perception sensors are prone to noise. So, to get the effective data, pre-processing is an
essential part.

o Lidar: Incorporating the lidar data in the fitting algorithm involves a transformation
process where it is converted into the point cloud data which gives the 2-
Dimensional representation of the lidar scan data and converts it into the robot
coordinate frame to ensure x and y values are consistent to feed in the algorithm.
More information is provided in section 4.3.

o Camera: For computer vision, the images are acquired from the camera and then
pre-processed and then used to feed into the algorithm. More information is provided
in section 3.3.

3.2.6 Objective-Based Algorithm
In this part of the process, based on the objective of both sensors the algorithm is provided.

« Fitting Algorithm: The pre-processed data of lidar sensor is introduced into the fitting
algorithm known as RANSAC which is used for robust estimation of model
parameters from noisy data allows the removal of noise from the data and fitting the
data accurately by providing the fitting line, its slope and intercept. The visual
representation of the fitting line generated by the algorithm is illustrated below:

RANSAC Fit Line

Field of View
I

. Front Lidar

‘ Distance

Velocity

f—

Rear Lidar

TC200 [,,‘E'_

Fig. 8: General idea of RANSAC algorithm

In the above Fig. 7, it is described that when TC200 reaches in front of the shelf,
the RANSAC algorithm comes into play, generating the fitting line based on the
estimation model leveraging the data collected by the lidar sensors. This data is then
used to facilitate the alignment of the robot with the wall by using P-Controller. The
robot achieves parallelism with the wall exclusively when the vector ‘x’ within the
robot's coordinate system is orthogonal to the vector ‘y’ within the map coordinate
system.
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« Computer Vision Algorithm: Camera data after preprocessing is used in the detection
algorithm to effectively detect the objects. Based on the results from the algorithm,
the robot achieves the capabilities of detecting the objects and initiating a momentary
stop. As discussed in part 4.4.

3.2.7 Actuation

Based on the fitting data, the robot performs its parallel motion along the shelf with the help of
two proportional controllers where one controls the distance of the robot to the shelf (x-
direction) and second one the orientation of the robot (6-yaw angle) with respect to the shelf.
Based on the computer vision algorithm, if the objects are detected and the robot is stopped, it
displays the information of the number of objects detected and detection accuracy to the user.

This complete workflow is separated into three modules which can be referred to as the system
architecture of the entire function presented and explained in Figure 8:

Object Tracker

Object

Parallel Movement )
Segmentation

'

Task Scheduler

Fig. 9: Object Tracker Architecture

o Parallel Movement
This module is responsible for moving the robot parallel while facing the shelf as well
as the implementation of different stop conditions based on the situation. This module
generally uses the RANSAC algorithm and a P-Controller to initiate the parallel motion.
e Object Segmentation
This module helps robots detect and identify the objects stored on the shelf while the

shelf follower module is in active mode. The complete module has been explained well
in section 3.3.
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e Task Scheduler

This module enables robots to execute the two previously described modules for a
specified number of tasks provided within this module.

3.3 Computer Vision and Deep Learning Model

This chapter delves into the foundational pipeline of a deep learning model and outlines the
various critical steps involved in the process. It provides a comprehensive discussion on how
to execute these steps effectively.

3.3.1 Pipe Line of a Deep Learning Model
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Fig. 10: Basic pipe line of a deep learning model in Computer Vision

3.3.2 Creating a Custom Dataset

A custom dataset in computer vision is a dataset that is specifically created for a particular
application. This means that the images or videos in the dataset are relevant to the specific task
that the computer vision model is being trained to perform. If custom data sets are not available
online, then in most cases it has to be generated from scratch.

« Image Acquisition

Dataset generation involves capturing or sourcing relevant images that represent the
specific task or scenario the dataset is intended for. This process may involve using
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cameras, downloading images from the internet, or utilising other data collection
methods.

Points considered while taking images:

1. Variety of images: Different lighting, Angle of view, the background and the
pose of the object

2. Quality of image: Clear and sharp images were taken to highlight the key
features of the image. Images with some level of noise or low-quality images
were also taken to imitate the real-world scenario of real-time image
acquisition. In Machine Learning training “Garbage In is Garbage Out”.

3. Adequate quantity: The greater number of images the better the model will
perform.

Data Annotation

Data annotation is the process of adding human-readable labels to data. This can be
done for a variety of purposes, such as training machine learning models, creating
search indexes, or making data more accessible to people with disabilities

Manual Annotation of Image: Use of manual annotation tools for creating boundary
boxes or Polygons or masks on the object to be annotated.
Notable tools: LabelMe, Labellmg, VGG Image Annotator

b. Automatic Annotation:

Supervised Annotation: It is the process of manually labelling images, and then
using those labels to train a machine learning model to automatically annotate new
images. This is the most common approach to image annotation, and it is the most
accurate way to get high-quality annotations. However, it is also the most time-
consuming and expensive.

Notable tools: CVAT, Hasty.ai, YAT, AutoML Vision Edge

Fully Automatic Annotation: It is the process of automatically annotating images
without any human intervention. This is a newer approach to image annotation, and
it is becoming more and more popular as the accuracy of machine learning models
improves. However, fully automatic annotation is not yet as accurate as supervised
annotation, and it can be difficult to get high-quality annotations for complex
images. Deep learning models can be used for fully automatic annotation of the
image such as Segment Anything Model.

Data Augmentation

Image data augmentation is used in machine learning to improve the performance
of models trained on image data. By artificially increasing the size and diversity of the
dataset, data augmentation can help models learn to better generalise to unseen data.
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Reasons of doing Data Augmentation:

1. Reduces model overfitting

2. Makes the model robust to variation

3. Reduces manual data annotation

4. A new dataset can be created from the existing dataset
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Fig. 11: Various methods of Data-augmentation

3.3.3 Training a Deep Learning Model

There are various methods of training a Deep Learning Model: -

1. Training from Scratch

This is the most common method and involves training the model from scratch on a
dataset of images with ground-truth annotations. This can be a time-consuming process,

but it can also lead to the best results.

2. Fine-Tuning

This method involves starting with a pre-trained model and then fine-tuning the model
on a dataset of images with ground-truth annotations. This can be a faster way to train

a model, but it may not lead to the best results.




3. Transfer Learning

This method involves starting with a pre-trained model from another task, such as
image classification, and then fine-tuning the model on a dataset of images with ground-
truth annotations for the new task. This can be a very efficient way to train a model, but
it may not be as accurate as training from scratch.

Ensemble Learning

This method involves training multiple models on different datasets and then
combining the predictions of the models to get a better overall prediction. This can be
a very effective way to improve the accuracy of a model, but it can also be a more
complex and time-consuming method.

Why using transferred learning for training a Yolov8 model on a custom dataset is better:

It saves time and resources. Training a model from scratch can be time-consuming and
computationally expensive, especially if you have a small dataset. Transfer learning can
help you to save time and resources by reusing the knowledge that has already been
learned by a pre-trained model.

It improves accuracy. A pre-trained model has already learned to extract features from
images and to classify objects. This knowledge can be transferred to your custom
dataset, which can help to improve the accuracy of the model.

It makes the model more generalizable. A pre-trained model has been trained on a large
dataset of images, which helps it to generalise to new images that it has not seen before.
This is important for object detection, as you will often need to detect objects in images
that are different from the images that the model was trained on.

3.3.4 Deployment of Deep Learning Model on a Mobile Robot

The Trained Deep Learning model is validated and deployed on the Autonomous mobile robot.
The entire process is orchestrated using the Robot Operating System (ROS). Real-time
inference is achieved through efficient hardware resources integrated into the mobile robot.
The trained deep learning model, specifically a YOLOvV8 architecture, is fine-tuned on a custom
dataset, tailored to the unique demands of the warehouse scenario.

This approach not only leverages the pre-trained knowledge but also ensures the model's
generalizability to handle diverse objects and environments. The ROS-based deployment
allows seamless communication between various components of the robotic system, ensuring
effective execution of object detection and tracking tasks in real-world warehouse settings.
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Chapter 4: Implementation

4.1 Use Case

In the context of implementation, the modules mentioned in Chapter 3 were developed and
used to detect and identify bins from the shelf. For the proof of concept, only the bins of red
and yellow colour were detected. When the robot is performing a task, when it detects and
identifies an object of interest on the shelf, it displays some metadata that is relevant to that
respective object such as the confidence score and the number of occurrences of that object.
Fig. 11 shows the system diagram for implementation purposes.

External Machine on User side TC200 side
i GUI i | ROS Machine !
| AI*LIHDI'-IDTDUS i i Parallel Movement |
| avigation | ssh communication : l
| Object Tracker i“ i Image Acquisition |
i Exit i i |

Fig. 12: System Architecture for Implementation
The overall system has been split into two perspectives:

« External Machine that is running on the User side which runs the modules: Autonomous
Navigation, bin tracker and task scheduler
e TC200 Robot side which runs the modules: state machine and image acquisition

The functionality of the modules described in Chapter 3 remains the same. The reason for this
specific arrangement in the system diagram is to assert the fact that the system can be scalable
and run on different user machines. Hence this gives the user a degree of freedom in choosing
which programs or modules to run on the robot depending on the requirement. As two separate
ROS machines were running, the communication between the machines took place through
SSH (Secure Shell) protocol [18]. The GUI which is run on the user side wraps the modules
discussed in Chapter 3.
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TC200 Warehouse Management System

Autonomous Navigation

Fig. 13: Graphical User Interface for Use Case
The basic functionality of GUI according to Figure 13 is defined below:
1. Autonomous Navigation

When invoked, asks the user to input X, y and theta of the target location on the map.
The robot then navigates autonomously to the target location while avoiding obstacles.
This function is useful if the robot has to travel to a non-shelf coordinate in order to
perform other tasks.

2. Object Tracker

When invoked, it performs the scheduled tasks mentioned in Fig. 9.
3. Exit

When invoked, quit the application.

The next segment gives a detailed explanation of the implementation of the modules wrapped
by the GUI.

4.2 Autonomous Navigation

The overview of the Autonomous Navigation can be obtained by referring to section 3.2.2. To
implement the Autonomous Navigation, it is necessary to follow a series of steps, which can
be elucidated as follows:

4.2.1 Map building or Mapping

Before implementing the Autonomous Navigation, the prerequisite of mapping must be

fulfilled. For that reason, the built-in ROS package “Gmapping” is used which uses the data
from LIDAR scan. The robot is manually driven with a joystick while the gmapping function
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is active. The environment is explored and a 2D map is formed until the final results are
satisfactory. This map is later used by the robot as a reference to localise itself using the AMCL.

4.2.2 Acquiring goal locations

Autonomous navigation consists of several parts which allow robots to reach specified
locations. One of the major important parts is the AMCL package. This package is responsible
for estimating the robot's position and its orientation within the map. It continuously updates
the robot pose estimates as it moves.

To acquire the AMCL pose, it is necessary to do mapping as it is an essential part which
provides robots with fundamental knowledge of the environment. With mapping only AMCL
can get the reference to compare the sensor data.

To get the robot’s current location into the environment, AMCL was used, which publishes the
robot’s position (X,y and z) and orientation (X,y,z and w) which is in Quaternion angles with
respect to the map frame in the topic “amcl pose”. The position of the robot (x and y) was
calculated from the amcl position data but to get the orientation of the robot in an
understandable manner, the conversion of the data from Quaternion to Euler Angle (0) was
required. These coordinates of the robot (x,y and 0) represent the robot's location in the actual
environment. The robot travelled to different locations on the map, in order to get its
coordinates on a specific location.

4.2.3 Travel to the goal location

After acquiring the coordinates of the goal location, the robot uses the ROS navigation stack
to reach the destination which is well explained in section 3.2.2.

4.3 Object Tracker

As discussed in the methodology section, the function consists of two modules: Task
Scheduler, and object tracker. The Module name Task Scheduler consists of different sub-
modules which are Autonomous Navigation and State Machine.

4.3.1 Task Scheduler

This module has been designed to enable the robot to operate in various shelf start locations
and execute the Autonomous Navigation and Parallel modules by invoking them by setting the
parameter “enabled 1”. The parameter files are provided to give the capabilities of performing
these modules on different shelf locations.

What are Parameter Files?

The parameter files are provided by the user which provides the task description to the robot.
The parameter files use the JSSON (JAVASCRIPT OBJECT NOTATION) format and 5
specific information with regards to the shelf is stored.
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The 5 key pieces of information are: -

« X-coordinate of shelf start location

« y-coordinate of shelf start location

o theta angle of shelf start location

« shelf length: This parameter also acts as a distance indication for the robot to travel along
the shelf. The user provides this length of the shelf in meters.

« Direction: This parameter indicates whether the robot should travel towards right or left.

The parameter files are stored on the user side and by providing these 5 crucial pieces of
information to the robot, the task can then begin.

The sub-modules of the Object Tracker module have been explained below:
4.3.2 Parallel Movement

This module manages the robot's lateral movement along the shelves. The section delves into
the specifics of its implementation and the techniques employed. A detailed explanation of the
implementation of the RANSAC algorithm, P-Controllers, stop conditions tailored to various
robot states, and situational factors is provided below.

RANSAC Fitting Algorithm

The robot is equipped with two Lidar sensors, strategically positioned at its front and rear ends.
In real-world scenarios, Lidar data can be susceptible to noise, which may jeopardise task
execution. To mitigate the risk of failure and render the data suitable for analysis, a crucial pre-
processing step is undertaken. During this pre-processing phase, the data is typically
transformed to align with the map frame's coordinate system, which inherently differs from the
robot's coordinate system. This alignment enhances data utility. Subsequently, the Lidar data
is converted into the robot's coordinate frame for optimal usability.

The Lidar sensor captures data across a range of 0 to 719 data points. However, for the specific
task of projecting the fitting line onto the shelf, only a subset of these points is required. To
achieve this, the Lidar data is meticulously filtered and selected based on its relevance, and
then it undergoes a transformation into a 2D point cloud format with x and y coordinates. This
refined data format enhances its efficiency and suitability for subsequent algorithmic analysis,
where it is used as input.

The implementation of the RANSAC algorithm is facilitated through the utilisation of the
"Scikit Learn" machine learning library. This implementation involves providing the algorithm
with 2D point data in the form of x and y coordinates as input. The RANSAC algorithm, in
conjunction with the "Scikit Learn™ library, is designed to effectively derive the fitting line by
eliminating extraneous data points that are not relevant to the task.What sets this
implementation apart is the automation of certain critical aspects. The RANSAC method
provided by the "Scikit Learn™ library is capable of autonomously determining the appropriate
number of iterations and identifying the inliers for the algorithm. This automated process
significantly reduces the complexity of parameter selection.

Ultimately, the RANSAC algorithm, when executed with the "Scikit Learn™ library, yields the
fitting line, complete with its slope and intercept. These output values are subsequently
employed to orchestrate the parallel motion of the robot along the shelf, aligning it with
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precision. The explanation and the visualisation of the RANSAC algorithm can be understood
by the Fig. 8.

Proportional Controller

The Lidar data is always changing which results in sudden fluctuations in the results of the
RANSAC algorithm. This can cause variations in the slope and intercept data which leads the
robot to have jerks in its motion while performing the tasks. To eliminate the jerks and control
the distance between the robot and wall (x) and the orientation of the robot (8) two P-
Controllers have been implemented. One controller aims to correct the error arising from the
disparity between the target distance from the wall and the intercept. Similarly, the second one
aims towards the control of robot orientation (0) where the error definition is the difference
between the target orientation of the robot which is predefined as 0.0 and the slope. The wheel
movement is initiated based on this via the “cmd_vel” topic where the velocity limits in the X,y
and z directions of the robot were provided.

The mathematical representation of the P controller is elaborated upon in detail in section 5.1.2.
Within this section, you will find a comprehensive explanation of the controller's mathematical
formulation and its role in the robot's navigation and control.

Additionally, various stop conditions have been meticulously implemented to cater to diverse
scenarios and situations. These conditions enable the robot to make informed decisions about
when and how to halt its motion based on the specific circumstances it encounters during its
navigation tasks. This has been explained in the following section.

Stop Conditions

During the task execution, there can be some situations where the robot needs to be stopped or
halt its movement for a while. These situations have been explained in the section 3.1 with
Object Tracking. To implement these stop conditions, the Lidar data and the Camera data are
used. To implement the stop condition 2, Lidar data is used where if any object comes near the
specified range of the robot, 0.0 velocity is published in the “cmd vel” topic. In the stop
condition 3, as in the parameter file the shelf distance is already provided. If the shelf distance
is already reached, the robot stops its movement. Stop condition 1 is implemented based on the
computer vision algorithm. Robot stops momentarily if the bin is detected in the camera and
continues its motion after 10 seconds.

Object Segmentation

This module consists of a computer vision algorithm which provides the mind to the machine
to detect the bins placed on the shelf. Image acquisition runs on the robot’s computer, takes the
image of the environment and publishes in the topic which the computer vision algorithm then
subscribes for data processing. The detailed implementation of this module has been explained
in further sections of 4.4.

4.4 Computer Vision and Robot Perception

In this section the entire pipeline following which the instance segmentation model was trained
and deployed later on a separate computer, is discussed. When the robot moves parallel to the
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wall during Object Tracker, the algorithm detects the bin and segments it by applying a mask
on it, and a tracker function keeps a count of the number of bins.

4.4.1 Pipeline of the Instance Segmentation Model
This section gives the pipeline of how the Yolov8 segmentation model is trained and for using

it as an object identification module on the TC200 robot’s Object Tracker function. The
complete pipeline used to train the Instance segment model is described in the Fig. 13.
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Fig. 14: Complete pipeline of the implemented Yolov8 Model

The Segment Anything Model (SAM) is a large language model (LLM) developed by Meta
Al that can segment every object in an image with high accuracy. This makes the model quite
large and the computing power required to operate it in real time is quite expensive.

As an alternative, the Yolov8 model is used for instance segmentation since this model gives a
considerable amount of accuracy and real-time operating speeds even with CPU.

The input to the SAM model is a boundary box from the Yolov8 Object detection model. The
SAM model gives the corresponding instance segmented mask in txt format, which is later
used for training the Yolov8 Instance segmentation model. Annotation for instance
segmentation tasks is quite tiresome and costly, thus this implementation makes the process
cost and time-effective.
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4.4.2 Custom Dataset Generation
e Image Acquisition

In this project, various methods of image acquisition were implemented, most images
were taken from a phone camera, and some images were taken from a webcam of the
robot to imitate the actual perception of the mobile robot. Other images were
downloaded to create a varied data set.

Images acquired 300 in total

Obiject to be Industrial storage bins

detected

Class 2 Class: [Red bin] and [Yellow bin]

Key feature Colour, Shape, Size and Orientation

Shortcoming No unique pattern or texture on the surface. Only difference between
two bins is colour

« Data Annotation
In this project, two different types of annotation were done according to the task.
a. Boundary box Labelling: For object detection model

Use the Hasty.ai tool for supervised annotation of Images in .xml format which
is later converted to YOLO format

b. Segmentation Mask: For instance, the segmentation model

The Segment Anything model is employed for swift and precise annotation of
masks on images. It utilises the boundary box generated by the Object Detection
model as input to define a Region of Interest (ROI) for tasks related to instance
segmentation.

Set of Images OD Custom Model SAM Model

=+ =+ )=
\’ﬁ Annotated
Mask

v

Segment annotation label &

files generation |Fxx

Fig. 15: Pipeline of Segment Anything model for Automatic annotation
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A detailed comparison of various Manual and Supervised annotation tools is in the Appendix

Al.land Al.2

e Implemented Data Augmentation

Data Augmentation:

In this project taking thousands of images of the Bins [Objects to be detected] was not
a viable option. Thus data augmentation was implemented in two different ways.

1. Data Augmentation to increase the data set

It is the process of creating new data points from existing ones and adding them to the
dataset. This can be done by applying the same transformations that are used to augment
the dataset during training, or by using more creative methods such as generating

synthetic data.

Problems | Reasons

Lighting The lighting conditions in a warehouse can vary

conditions | greatly, depending on the time of day, the weather,
and the location of the warehouse.

Different The same object can be in many different poses in

poses a warehouse. For example, a box can be standing
upright, lying on its side, or even upside down.

Fewer The number of images available for training a

images mobile robot can be limited. This is especially true
for objects that are not common in warehouses.
Also collecting 1000s of images is a tedious
process.

Occlusion | Objects in a warehouse can often be occluded by
other objects. This can make it difficult for a
mobile robot to see the object and identify it.

Object size | The size of objects in a warehouse can vary

greatly. This can make it difficult for a mobile
robot to accurately perceive small objects.

Data
method

augmentation

Hue, Brightness, contrast
(Image enhancement)

Rotation, translation,
scaling, cropping,
mirroring

(Geometric

transformations)

Flipping, cropping, noise
addition, rotation,
translation, scaling

Blurring,
inpainting

masking,

scaling and cropping

Table 2: Use of various Data augmentation along with the reasons

The tools used for data augmentation in this project are Roboflow and Albumenation.
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Data Augmentation during the Runtime

Data augmentation during runtime is the process of generating new data points on the fly, as
the model is being trained. This can be done by applying the same transformations that are used
to augment the dataset during training.

1. hsv_h: This hyperparameter controls the amount of hue augmentation that is applied.
Hue augmentation changes the hue of the images, which helps the model to learn to
recognize objects under different lighting conditions.

2. The copy_paste hyperparameter in YOLOVS8 controls the probability of applying the
copy-paste data augmentation technique. A simple Copy-paste is a strong method of
data augmentation for instance segmentation [19].

3. Itisatechnique that copies and pastes a portion of one image onto another image. This
can be used to create new images that contain objects in different poses and locations.

Command to Train the model in Google Colab environment: With data, augmentation
parameters passed as arguments:

lyolo task=segment mode=train model=yolov8s-seg.pt data=..//Path to custom yaml file// epochs=35
imgsz=640 copy_paste=0.7 hsv_h=0.2

4.4.3 Training of Yolov8 model on Custom Data

Yolov8 model is trained for two specific tasks in this project:

1. Object detection: This model is trained to give Boundary box of the objects as input to
the SAM model

2. Instance Segmentation: This model is trained to do real-time instance segmentation of
the objects (industrial storage bins) by the mobile robot.

Steps Involved in training the Yolov8 model:

1. Install the package named “ultralytics”
2. Organise the folder structure for:

a. Training dataset [70-80% images of the entire dataset with its labels]

b. Validation set [20-30% images of the entire dataset with its labels]

c. Test dataset [Images / Videos /real-time testing]

d. Configuration files: It contains the path to these data set and declaration of
the objects to be detected in class in a yaml file

path: (dataset directory path)

train: (Complete path to dataset train folder)
test: (Complete path to dataset test folder)
valid: (Complete path to dataset valid folder)

#Classes
nc: 2# update for the total number of classes to be detected
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#classes names
#add new class names here
names: ['Red Bin', 'Yellow Bin']

#various default hyperparameters can be declared and modified
Hyperparameter:

3. Training process

yolo task=seg mode=train model=yolov8s-seg.pt data=custom.yaml epochs=35 imgsz=640

task = segment [could also be detect or classify]

mode = train [could also be predict or val]

model = yolov8s-seg.pt (small) [could also be nano, medium or large model]
epoch = 35 (depends on dataset and model result)

imgsz = 640 (image size: multiple of 32)

How to Increase the Class dataset?

In order to detect more objects increase the class dataset was required, which was quite a
straightforward process:

1.

Collect New Data

Collect images that feature objects from the new class. If possible, capture images that
include both old class and new class objects. If not, employ data augmentation
techniques to blend old and new class objects together.

Annotate Data

Annotate the new class's objects in the images by drawing bounding boxes (for Object
Detection). For Instance, segmentation, and mask annotation by SAM model can be
used.

Update Class List

Modify the YOLO configuration file to include the new class in the class list, and add
the class name to the names file.

Combine Datasets

Integrate the new class's annotations and images with your existing dataset while
preserving the YOLO annotation format.

Retrain the Model

Continue training your YOLO model using the combined dataset, starting from scratch
or fine-tuning the existing model with the new data.
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Evaluate and Tune

After training, assess the model's performance on a validation set, making necessary
adjustments to hyperparameters for optimization.

Test and Deploy

Assess the model's performance with the new class obe declared test dataset, and if
successful, deploy it for desired applications.

4.4.4 Deployment on the Robot

Object Tracker
TC200 Robot ' Model Parallel Movement |,
with WebCAM :
\ i :
o : :
| Live feed of Images 1 Object !
r]_! 5 IO ™ Segmentation Task Scheduler E
— |\ J

Display Detection .
[ Restilt ] [ Actuation j

J

Fig. 16: Communication of Object tracker with the Robot

Deployment on the TC200 Robot

The Object Tracker algorithm operates on a distinct computer on the user side quipped
with the custom Yolov8 Instance segmentation model. The TC200 Robot is linked to
this computer through an SSH communication protocol within the same network.
Communication between the Robot (TC200) and the external computer follows a
publisher-subscriber model, facilitating the transmission of images from the camera
mounted on the robot to the user computer.

The computer, where the Object Segmentation algorithm and Object tracker functions
are active, dispatches an actuation signal to the robot to execute a stop command upon
detection of the desired object.

Object Tracker function

For counting multiple objects in the image and to track if the object has crossed a

particular ROI in the image a SORT tracker is implemented. SORT is a simple online
and real-time tracking algorithm for 2D multiple object tracking in video sequences.
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This function keeps and updates the counter for total instances of Object detection, red or
yellow bin. As the robot moves parallel to the shelf the objects in the image move backwards
(relative to the robot) thus crossing a centre ROl of the frame. This updates the tracker function
and gives a stop command to the robot.
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Chapter 5: Validation

5.1 Autonomous Navigation Modules

5.1.1 Validation of Laser Scan

The TC200 robot, in this specific use case, is meant to be used in industrial applications like
warehouse management. Here, the LIDARs on the TC200 are deployed for various tasks such
as obstacle avoidance, path planning, mapping, etc. These applications rely on the precise and
reliable data provided by LIDAR sensors. Standard deviation plays a critical role in assessing
the quality and reliability of the data obtained from these systems.

LIDAR sensors emit laser beams and measure the time it takes for these beams to bounce off
objects and return to the sensor. By analysing the time-of-flight or phase shift of the returning
laser pulses, LIDAR creates point clouds that represent the spatial distribution of objects and
surfaces in the environment. These point clouds are used for various purposes, including
mapping, obstacle avoidance, and object recognition.

The standard deviation in a LIDAR laser scan provides insights into the dispersion of individual
data points within the scan. In the context of industrial warehouses, a low standard deviation is
desirable because it indicates that the measurements are closely clustered around the mean
distance value. This high precision is crucial for tasks such as:

Obstacle Detection and Collision Avoidance: The TC200 operating in warehouses needs
precise distance measurements to navigate safely and avoid collisions with obstacles. A low
standard deviation ensures that the LIDAR data accurately represents the distances to objects,
reducing the risk of collisions.

Path Planning: The TC200 also uses LIDAR data to plan its paths efficiently. Low standard
deviation in laser scans leads to more accurate mapping of the environment, enabling precise
path planning and optimization of logistics operations.

In order to validate the laser scan, the TC 200 was allowed to perform a scan in the respective
environment. During this time, the laser scan is published to the “/merged cloud” topic.
However, this data is raw and is collected from the entire environment. This is unneeded and
unusable. Hence, this data is then converted to point cloud data through Point Cloud Library
(PCL) and is now in the form of x, y, and z coordinates through a point generator. Moreover,
the scan is then limited to identifying just the wall component in the environment and ignoring
all other objects. This is done by limiting the scan range of the x and y components. Any points
landing between x of -1.5 and +1.5 and y of -1.2 and +1.2, are considered fallen on the wall.
Hence only those points are then further processed. Furthermore, the points are then compared
against the best fit line created by a RANSAC algorithm. Following the RANSAC regressor,
the best-fitting line is fit against the point cloud of the wall. This is how the robot recognises a
wall and travels parallel along it. Therefore, as previously mentioned, a certain few parameter
can be used to understand how consistent and accurate this line is. For this, three parameters
are used. Their importance as well as their interpretation for this specific validation is as
follows:
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Mean (Mean Error):

Importance: The mean error represents the average discrepancy between the observed
laser points and the points predicted by the RANSAC line. It's a measure of how well
the line approximates the data on average.

Interpretation: A lower mean error indicates that, on average, the laser points are closer
to the RANSAC line. This suggests a better fit to the data.

Root Mean Square Error (RMSE):

Importance: RMSE measures the square root of the average of the squared errors
(residuals). It provides an overall assessment of how well the RANSAC line fits the
laser points.

Interpretation: A lower RMSE signifies that the laser points are, on average, closer to
the RANSAC line. It's a more comprehensive metric than the mean because it considers
the magnitude of errors.

. Standard Deviation:

Importance: Standard deviation measures the spread or dispersion of the residuals from
the RANSAC line. It indicates how consistent or variable the errors are.

Interpretation: A lower standard deviation suggests that the residuals are more tightly
clustered around the RANSAC line, indicating a more consistent and accurate fit. A
higher standard deviation indicates greater variability or scatter.

In overall terms, Mean provides insight into the overall bias or average error in the fit. RMSE
offers a comprehensive assessment by considering errors' magnitude and direction. Standard

Deviation gives information about the spread or consistency of errors.

The average values for the corresponding metrics are shown in the Table:

Parameters Drywall Glossy Door Metal Shelf
Mean 0.000693 -0.0498 -0.0013
RMSE 0.004171 0.3497 0.0154
Standard Deviation 0.004129 0.3462 0.0153
Minimum Error -0.0122 -1.0720 -0.0291
Maximum Error 0.0131 0.4426 0.0265

Table 3: Deviation parameters categorised by wall material

It is inferred that the RMSE and the Standard deviation for all the environments were always
either the same or very close in value. This may be due to symmetrical residual distribution.
This means the points falling on the wall are equally likely to be on either side of the RANSAC
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line. If there is no significant directional bias in the errors, it means that the RANSAC line
provides a good overall fit to the data, and errors in both positive and negative directions are
distributed fairly evenly. This checks out considering these are good environments for LIDARs
and laser scan output.

Moreover, from Table 3, it can be observed that the Drywall was the best environment for laser
scan outputs. It is ideal due to its matt, non-reflective finish. On the other hand, the glossy door
happens to be the worst of the three environments with the highest deviation. It is especially
notable that the minimum error is very outlandish because it is very likely a reflected laser
point from the glossy door. The metal shelf is also not as good as the drywall but acts as a
suitable yet unideal middle environment. However, it appears the reflections are not an issue
here, likely due to the matt finish of the shelves. This study shows the effectiveness of the
Hukoyu LIDARs that are used by the TC200 and their vulnerability to the respective
environments in which it is placed. Hence, the best results can be expected when the walls of
the environment are smooth, non-reflective and matt-coated.

Error Bar Chart for Mean and Standard Deviation
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Fig. 17: Error Chart of Mean and Standard Deviation of Laser Points

5.1.2 Validation of P Controller

The validation of the Proportional controllers used in this specific use case implementation is
done by tracking the trajectory of the TC200 robot while using the two P controllers that were
elaborated in section 4.3.2 above. For this purpose, the robot was loaded in a warehouse
environment and was then programmed to move parallel to a long shelf, holonomically by
giving a Linear Velocity in the y-direction of TC200.

During this type of movement, the first P Controller came into action and the error caused by
the disparity between the target distance of the robot from the wall, set by the user, and the
intercept of the best-fit line arising from the RANSAC Algorithm fit line, was controlled by a
Proportional Gain value (Kp_distance) of -0.5, which was multiplied by the distance error. This
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value was given to the Linear Velocity of the robot in the X-direction, in order to control the
robot's distance from the wall.

The second P Controller controlled the robot orientation (0) where the difference between the
target orientation of the robot, which is predefined as 0.0, and the slope arising from the best-
fit line from the RANSAC Algorithm. This difference in the orientation angle of the robot is
then controlled by multiplying the angle error by a Proportional Gain value (Kp_angle) of 0.5.
This value was given to the Angular velocity of the robot in z-direction, in order to control the
robot orientation.

These values of the Proportional Gains for both the P controllers were fine-tuned, so that the
robot moves smoothly, without exhibiting noticeable oscillations during the robot movement.

e For P Controller 1:-

Distance Error (delta_distance) = target distance - distance from the wall at that
instance

Kp_distance =- 0.5

linear_vel_x = kp_distance * delta_distance

e For P Controller 2:-

Angle Error (delta_angle) = target orientation angle - orientation angle at that instance
Kp_angle = 0.5
velocity_msg.angular.z = angular_vel

The plot below, Fig. 18, shows the trajectory the TC200 Autonomous Mobile Robot exhibits
when moved holonomically along the shelf, in a warehouse environment. The combined effect
of both the Proportional Controllers, controls the robot's movement to be fixed at a particular
distance to the wall of the shelf and be in a desired orientation, such that the camera mounted
on the robot, faces the wall of the shelf at every instance, in order to detect the desired objects,
while the robot moves holonomically along the shelf.

The Actual Trajectory plot is generated by subscribing to the ‘odom’ topic of TC200 to get the
positions in x and y along with the orientation of the robot and then plotting the positions as
plot.plt and orientation as plot.scatter. The Ideal plot of TC200 is generated by subscribing to
‘/front/scan’ topic of LIDAR sensor, to get the ranges of laser scan according to the real world.
Some small peaks in the Ideal Trajectory plot are due to some disturbances in the environment.
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Fig. 18: Actual and Ideal Trajectory of TC200 during Use Case Implementation

From both the plots, it can be observed that the Actual Trajectory of TC200 while moving
parallel to the shelf denoted by the straight laser scan data in the Ideal Trajectory plot, is not as
expected. There is a slight deviation from the start to end point of the actual trajectory, when
compared to the actual trajectory of TC200. Due to the disturbances in the environment, there
are deviations in the LIDAR data that is used in the RANSAC algorithm. As the slope and
intercept of the best-fit line are used in the P controllers, as mentioned above, we observe this
actual trajectory instead of a smooth parallel line. But still, the P controllers do a good job in
controlling the orientation angle as well as the distance between robot and target wall.

5.2 Computer Vision Module

5.2.1 Validation of Object Detection Model

To validate the object detection model, experiments with three training datasets were
conducted, each comprising 100, 150, and 250 images. Consistent object instance ratios were
maintained and included 15-20% background images in each dataset. VVarious augmentation
techniques were applied during training to assess their impact on performance.

Validation Dataset

Number of Images

Red Bin Instances

Yellow Bin Instances

Validation

35

36

38
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Test Dataset

Number of Images

Red Bin Instances

Yellow Bin Instances

Test

15

22

26

Table 4: Validation and test data set

To interpret the results, please refer to the following explanation of the validation parameters:

1) and 2) rows represent the percentage of correct detections for red and yellow bin
instances in the test dataset.
4) and 5) rows indicate the percentage of correct detections for red and yellow bin
instances in the validation dataset.
3) row signifies instances where the background was mistakenly identified as
Red/Yellow on the test dataset.
6) row denotes instances where the background was erroneously identified as
Red/Yellow on the validation dataset.

Model Trained on

100 images with

150 images with

of Yellow Bin Instance
for validation dataset

97.36 %

38/38=100%

100 %

38/38=100%

100 %

Sr. No.| Validation Parameters 100 150 250 250 images with |250 images with
imases augmentation imares augmentation imases augmentation augmentation
copy-paste & hue copy-paste & hue copy-paste & hue copy-paste
85 | &hue)| "B &hue) | "B ¢ &hue)| ( )
i | RedBininstancesfor | 21/22=\ ), 5 100% | 2M22° | 20/2-9090% | 22227 | 212 -95.45% | 22/22-100%
test dataset 95.45 % - ® | 95.45% TR 100% T - ’
, | YeflowBinInstance for | 24/26 - 24/26=92.30% 24/26 = 26/26 = 100 % 26/26 = 24/26=92.30% | 26/26 =100 %
test dataset 92.30% TUTTET 1 9230% N ’ 100 % TOeEE N ’
False Background
3 instances for test dataset 2 3 2 1 1 1 0
(instances)
True positive Detection
pos 35/36= . | 36/36= | 36/36= . .
4 of Red Bin Instances for 9722 % 35/36=97.22% 100 % 36/36=100% 100 % 36/36=100% 36/36=100%
validation dataset
True positive Detection 37/38 = 38/38 = 38/38 =

38/38 =100%

38/38=100%

False Background
instances for validation

dataset (instances)

13

12

14

11

Table 5: Object detection model training validation on different number of images

As the size of the training dataset was expanded, a notable improvement in true positive object
detection rates, rising from approximately 92-97% to a perfect 100% for both the test and
validation datasets, was observed. Concurrently, the rate of false background detections
diminishes with the increasing number of training images.

In the final two columns of the analysis, a comparison of the results obtained using different
augmentation techniques was conducted. It became evident that in comparison to combining
copy-paste and hue augmentation, employing only copy-paste augmentation yields favourable
outcomes.
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5.2.2 Validation of SAM Model Annotations

1. Validation on Test Dataset

Since the Segment Anything model auto annotates the image for mask labels, its result
must be validated to ensure that the correct labels are sent for training the Yolov8
Instance segmentation model.
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Fig. 19: Result of SAM auto annotation on boundary box input

SAM's auto annotation proves highly effective when the Object Detection (OD) model
provides accurate labels, especially in complex images with numerous objects and
intricate arrangements. This success highlights SAM's potential as a valuable tool for
segment label annotation. However, there is still room for improvement in the OD
model to enhance the accuracy of generated boundary boxes.

2. Validation in Real Time on TC200

Despite being slow for real-time implementation with a frame rate of 10 - 12 fps, The
SAM model does accurate annotation and creates a well-defined boundary/mask
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Fig. 20: Validation of Auto Annotation from SAM in real time

3. Outliers in SAM model Annotation

| SRS
X
[
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|
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Fig. 21: Outliers in Auto Annotation by SAM model

Occasionally, SAM encounters challenges in producing perfect segment annotations
around objects when the Object Detection (OD) model's annotations are subpar or there
is a substantial variation in brightness and contrast on the object due to lighting
conditions and shadow. This issue becomes evident when examining certain sample
images as references. After a rough estimation, it appears that this type of problematic
image accounts for approximately 2-3 percent of the entire dataset.

5.2.3 Validation of the Instance Segmentation Model
In this validation process, rigorous evaluation of the model's ability to correctly segment
objects of interest from their backgrounds, determining its accuracy, robustness, and

generalisation capabilities was done. By meticulously examining a range of parameters,
metrics, and visualisation techniques, valuable insights into the model's strengths and
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weaknesses were gained. In this section, a comprehensive analysis of the YOLO segmentation
model's validation is presented.

Confusion matrix:

A confusion matrix is a visualisation that shows how your model is performing in the classes
in which it was trained. This validation was carried out on 140 images. The rows of the
confusion matrix represent the true labels of the objects in the dataset, while the columns
represent the predicted labels of the objects in the dataset. The off-diagonal elements of the
confusion matrix represent the number of objects that were misclassified. The diagonal
elements of the confusion matrix represent the number of objects that were correctly classified.
The confusion matrix in Fig. 21 shows that the instance segmentation of the object on the
validation data set is very good, there are very few false detections.

Confusion Matrix

Bin_red

Predicted
Bin_yellow

- 50

background

-25

Bin_red Bin_yellow background
True

Fig. 22: Confusion matrix of Instance Segmentation Yolov8 custom model

Precision-Recall Curve:

A precision-recall curve to assess the trade-off between precision and recall at different
confidence thresholds. A good model should have a curve that approaches the upper-right
corner.
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Fig. 23: Precision Recall graph of training the Instance Segmentation model

Loss Curves:

The loss curve shows how the model's loss changes over time during training and validation.
Initially, the loss may be high as the model starts with random weights, but it should decrease
as the model learns from the data.

train/box_loss

train/seg_loss

train/cls_loss

train/dfl_loss

1.2 4 —e— results
061 - smooth 0.975 1
1.04 0.950 -
0.5 4
0.925 -
0.8 A
0.900 -
0.4 4
061 0.875
0.31, + T . ‘ ‘ 0.850 4, :
0 20 0 20 0 20 0 20
val/box_loss val/seg_loss val/cls_loss val/dfl_loss

Fig. 24: Various Loss curves of training the Instance Segmentation model
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Validation of Instance Segmentation model on Test Images:

Fig. 25: Validation of instance segmentation on test images

Result:
Test Dataset 30 images
Red_bin instances 45 instances 45 instances detected
Yellow_bin instances 47 instances 47 instances detected

Table 6: Validation of instance segmentation on test images

The test dataset comprised both intricate scenarios featuring multiple stacked bins in a new
environment and straightforward images. Remarkably, the instance segmentation model
consistently and accurately identified all the bins without any false detections when the
confidence threshold was set at 60%. This level of performance demonstrates the model's
robustness.

Validation of Instance Segmentation Modelon Videos

The model worked well with video with videos shot from a mobile phone, the percentage of
false detection was roughly 2-3% and around 1% of frames had no detection even though the
object was present.

This was validated by taking multiple videos and then running it on the instance segmentation
model, The number of total frames was counted and the number of detection frames was
counted. The Frames per second were around 10-12 fps, when the model detects objects it
drops to 7-8 fps. due to processing.
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5.2.4 Validation of SORT Tracker in Use Case

To validate the performance of the tracker the model was run on the robot in real time. The
robot was run at different speeds and different numbers and sizes of the bins were detected to
evaluate the robustness of the tracker. The readings were taken over 5 cycles for each speed.

Robot Speed 1 large bin 1 small bin 3 bins 5 bins

0.04 m/s 100% detection 100% detection 100% detection 100% detection
0.06 m/s 100% detection 100% detection 100% detection 92% detection
0.07 m/s 80% detection 60% detection 73% detection 64% (detection)
0.08 m/s 60% detection 40% detection 33% detection 36% (detection)

Table 7: Validation of instance segmentation model on the robot in Real time

The findings indicate that as the speed of the robot escalates, the tracker's capacity to identify
and stop the robot for the object reduces gradually. Optimal detection is achieved at speeds of
up to 0.06m/sec. This phenomenon can be attributed to factors like the number of frames,
lighting conditions, and field of view, among others.
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Chapter 6: Conclusion

In conclusion, this project represents a significant leap forward in the realm of warehouse
management systems, offering a holistic solution to address the challenges faced by traditional
setups. The project's multifaceted approach has encompassed several critical components, each
contributing to its overall success.

First and foremost, the utilisation of the TC200 Autonomous Mobile Robot (AMR) brings
autonomous navigation to the forefront. This enables the robot to autonomously traverse the
warehouse, deftly avoiding obstacles while optimising path planning. By automating
navigation, this project eliminates the need for manual laborious tasks and reduces the risk of
human errors, significantly enhancing warehouse productivity.

Object tracking, the project's second key component, leverages advanced computer vision
algorithms and sensors like a camera and LIDAR to precisely detect and monitor objects,
particularly coloured storage bins. This innovation streamlines the retrieval process, making it
faster and more efficient. It also minimises errors in object identification, contributing to the
project's overall accuracy.

Moreover, the project's scalability factor ensures that it remains adaptable to ever-evolving
warehouse layouts and increasing demands. This flexibility positions it as a future-ready
solution, capable of evolving in tandem with the dynamic nature of modern warehouses.

Safety, an essential aspect of any industrial setting, is paramount in this project. The TC200
AMR incorporates cutting-edge safety features, including obstacle detection and collision
avoidance systems. This emphasis on safety ensures seamless collaboration between human
workers and autonomous robots, minimising the risk of accidents and injuries.

The current implementation of the use case extends to future possibilities and the scope of the
overall project. The introduction of a Robotic Manipulator Arm, mounted on the top of the
TC200 AMR, enables the picking and placing capabilities for the mobile robot, which is the
natural extension to the achieved solution, for the use case. Also, the mounted camera opens
the possibilities for endless advancements, beyond the scope of the project. Sophisticated
Computer vision models like the Segment Anything Model can be clubbed with natural
language processing. This innovation eliminates the need for an expanded image dataset, as
user-provided text or speech prompts can effectively drive the instance segmentation process.
This forward-thinking approach promises to elevate the project's potential impact and
relevance in industrial automation

All in all, the project's contribution to the industry is substantial. It exemplifies the potential of
advanced automation and robotics in revolutionising warehouse management systems. By
reducing reliance on manual labour, the project optimises productivity, reduces errors, and
enhances overall efficiency. It sets a benchmark for future endeavours in the field, emphasising
the importance of flexible and adaptive automation solutions in modern warehousing.
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Appendix

A 1.1 Comparison of popular Manual annotation tools

Feature

Platform

Open Source

Annotation Types

Export Formats

Customizable Labels & Multi
class support

Offline Availability
GitHub Maintained

Community Support
Documentation

User Interface

Ease of Use

Updates and Maintenance

LabelMe

Web-based

Yes

Polygon,
Rectangle

JSON, XML,
Others

Yes

No
Yes
Active

Available

Web-based Ul

Moderate

Varies

Labellmg

Desktop

Yes

Rectangle,
Polygon

PASCAL VOC,

YOLO

Yes

Yes
Yes
Active
Available

GUI

Easy

Varies

VGG Image
Annotator (VIA)

Web-based and
Desktop

Yes

Polygon, Rectangle,
Point

JSON, CSV, Others

Yes

Yes
Yes
Active
Available

Web-based Ul and
Desktop Ul

Moderate

Active
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A 1.2 Comparison of popular Supervised annotators:

Criteria

Annotation
Types

Ease of Use

Automation

Auto
Annotation

SAM
Support

Export
Formats

Cost

Platform

GitHub
Maintained

Scalability

Community
and Support

CVAT
(Computer Vision
Annotation Tool)

Bounding Boxes,
Polygons, Key
Points, Lines, etc.

Intuitive and
feature-rich

Manual, but
supports semi-
automation

Not available

Limited

Common formats
(COCO, Pascal
VOC, etc.)

Free and open-
source

Web-based (self-
hosted option )

Yes

Suitable for small
to medium
datasets

Active user
community and
documentation

Hasty.ai

Bounding
Boxes,
Polygons,
Points, Lines,
etc.

User-friendly
with Al
assistance

Al-assisted
annotation

Available

Limited

Common
formats
(COCO, VOC,
etc.)

Pricing
available upon
request

Web-based

Yes

Supports large
datasets

Availability of
support

YAT

Bounding
Boxes,
Polygons,
Lines, Points,
etc.

Moderate

Al-assisted

Available

Limited

Common
formats
(COCO, Pascal
VOC, etc.)

Pricing
available upon
request

Web-based

Yes

Supports large
datasets

Availability of
support

AutoML Vision
Edge

Various

Moderate

Yes

Available

Yes

Common formats
(COCO, Pascal
VOC, etc.)

Pricing available
upon request

Web-based

Not specified

Suitable for small
to medium
datasets
Limited
documentation
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