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Abstract 
 

Conventional Warehouse management systems are dependent on humans for the completion 

of warehouse tasks such as inventory management, transporting goods, etc. which consumes a 

lot of time, leading to poor productivity and can even lead to safety and health concerns for the 

people working there. To tackle such problems and keep up with the competition in terms of 

productivity levels, Autonomous mobile robots (AMR) are currently being introduced in many 

intralogistics operations in the warehouses.  Their advanced hardware and control software 

allow autonomous operations in dynamic environments. Compared to an automated guided 

vehicle (AGV) system in which a central unit takes control of scheduling, routing, and 

dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with 

other resources like machines and systems and thus decentralise the decision-making process. 

Decentralised decision-making allows the system to react dynamically to changes in the system 

state and environment.  

This identifies a real-world problem of a conventional warehouse management system, that has 

a lot of features, such as shelves and introduces an Autonomous Mobile Robot named TC200, 

that autonomously moves within the warehouse workspace while avoiding dynamic and static 

obstacles and reaches the shelf location. Then it moves holonomically about a feature to reduce 

trajectory time and which uses a fine-tuned robust computer vision algorithm to detect different 

coloured objects (yellow and red storage bins in this case) within the warehouse, via a camera 

mounted on the TC200 AMR. The main aim of TC200 is to move autonomously within the 

given warehouse and detect the bins and provide some statistical information regarding the 

objects to the user. The future scope of this project involves a manipulator which can be 

mounted on the robot, to collect these detected bins, and then to move them from one place to 

another, thereby decreasing the transportation time of objects and increasing the overall 

productivity of the warehouse. 
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Chapter 1: Introduction 
 

1.1 Background  

Warehouses are large buildings used by manufacturing companies, importers, exporters, 

wholesalers, and many other businesses where the employees receive, sort, stock, and prepare 

goods for distribution. The two types of warehouses are Traditional/Conventional Warehouses 

and Smart/Modern warehouses. 

1.1.1 Traditional/Conventional Warehouses 

Traditional warehouses have long been the cornerstone of supply chain operations, serving as 

storage facilities for goods before distribution. These warehouses are typically characterised 

by manual processes and labour-intensive operations. Warehouse workers are responsible for 

tasks such as receiving, inventory management, order picking, packing, and shipping. While 

traditional warehouses have served businesses for many years, they come with inherent 

limitations and challenges. 

Challenges faced by Traditional Warehouses 

• Full Dependency on Manual Labor 

One of the primary challenges of traditional warehouses is the reliance on manual 

labour. Finding and retaining enough human workers to meet the demands of the 

warehouse is very hard in industries where the work can be physically demanding and 

less appealing, and this leads to very high labour costs. Human involvement in various 

tasks increases the likelihood of errors and inefficiencies.  

• Decreased Productivity 

Order fulfilment in traditional warehouses can be time-consuming and prone to errors. 

Warehouse workers manually pick items from shelves, pack them, and prepare them 

for shipping. These manual processes are susceptible to mistakes, leading to delays in 

order processing and potential customer dissatisfaction. Moreover, the lack of 

optimised routing and warehouse layout can cause inefficient movement within the 

warehouse, resulting in wasted time and effort. 

• Inventory Management:  

Manual inventory management processes, such as manually recording item counts and 

tracking stock movement, are prone to inaccuracies and can result in discrepancies 

between actual inventory and recorded stock levels. This can result in stockouts, where 

products are out of stock when customers want to purchase them, or overstocking, 

where excess inventory ties up capital and increases carrying costs. Manual processes 

can be slower and less efficient than automated ones. This can lead to longer lead times, 

slower order processing, and higher operational costs. 
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• Scalability 

Traditional warehouses may face challenges in adapting to changing business needs 

and scaling operations. The infrastructure and layout of traditional warehouses are 

typically rigid, making it difficult to accommodate growth or changes in product 

assortments. Expanding storage capacity or introducing new processes may require 

significant time and resources.  

 

1.1.2 Evolution of Smart/Modern Warehouses 

The meteoric rise of eCommerce and the popularity of online platforms like Amazon, the 

supply chains are challenged to deliver products faster while keeping customer costs low, all 

while offering same-day or next-day delivery. This fulfilment is not possible with traditional 

warehouse management systems. So, smart warehouses are evolving more than ever. 

Smart warehouses integrate a range of technologies to streamline operations and enable 

intelligent decision-making. Automation plays a pivotal role, with robotics and machinery 

taking over repetitive and labour-intensive tasks. This automation reduces reliance on manual 

labour and enhances the speed and precision of warehouse operations.  

An AMR, or Autonomous Mobile Robot, is typically used as part of this automation. It is a 

type of robot designed to operate and move autonomously without human intervention. These 

robots are equipped with sensors, cameras, and advanced navigation systems that allow them 

to perceive their environment, make decisions, and navigate through spaces safely and 

efficiently. These robots are advanced enough that they can work together with humans to 

make operations better and more efficient. They can do things like carry heavy stuff and travel 

long distances which humans are not capable of doing for extended periods of time, which 

allows humans to do other important tasks. 

 

Benefits of Smart Warehouses over Traditional Warehouses 

• Increased Efficiency  

Smart warehouses optimise order fulfilment and contribute to increased productivity 

through automation. Robotic systems and AMRs automate the picking, packing, and 

sorting operations, significantly reducing processing time and errors. Optimised routing 

algorithms and advanced warehouse layouts further enhance efficiency, ensuring that 

orders are picked, packed, and shipped with precision and speed. 

 

• Inventory Management 

Smart warehouses revolutionise inventory management through real-time tracking and 

visibility. Automated systems, such as barcode scanners and RFID tags, enable accurate 

and efficient inventory control. With instant updates on stock levels and locations, 

businesses can make informed decisions to prevent stockouts or overstocking, 

improving customer satisfaction and reducing carrying costs. 
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• Scalability and Flexibility  

Smart warehouses offer greater scalability and flexibility compared to traditional 

warehouses. Modular designs allow for easy expansion or reconfiguration to 

accommodate changing business needs. These warehouses can seamlessly integrate 

with other systems, such as ERP or TMS, enabling end-to-end visibility and smooth 

data exchange across the supply chain. 

• Increased Safety  

Smart warehouses prioritise worker safety and ergonomics. Collaborative robots (co-

bots) work alongside human workers, reducing physical strain and improving safety. 

AI-powered safety systems can detect and prevent potential accidents. Overall, smart 

warehouses create safer working environments, improving employee well-being and 

productivity. 

 

Structure of the Report 

 

The report starts with an Abstract that offers a brief but comprehensive glimpse into the 

project's scope, significance, and outcomes. The table of contents is then listed, which provides 

a detailed sectional view of the topics that are going to be covered in this report. After that, 

comes the Chapter 1 - Introduction, which categorises warehouses into Traditional and 

Modern, and then states the major problems faced by Traditional and how the Modern one 

solves those problems. Then, the problem statement is stated. Chapter 2 is the Literature 

Review that highlights and showcases the similar solutions to the problem statement that are 

currently being implemented in the real world. Taking inspiration from the Literature review, 

a solution was proposed for the problem statement by providing a detailed description of the 

AMR that was chosen for the specific use case, i.e., TC200, taking into consideration its 

locomotion and path planning techniques. Chapter 3 starts with the use case overview and then 

talks about the concepts behind the implementation of the proposed solution by dividing the 

solution into two main features of Autonomous Navigation and Object Tracking and then 

stating the system architecture and the algorithms behind both the features. Further in Chapter 

3, the methodology of the Computer Vision Algorithms that are used for robot perception, 

which include the pipeline of the Deep Learning Model, Dataset generation, Model training 

and finally the model deployment on TC200 is stated. Coming to Chapter 4, find the 

implementation of the modules that were described in Chapter 3 for both the Autonomous 

Navigation and Object Tracking features are described. Once the implementation was 

successful, the validation of the implemented modules for both the features was the next step, 

which is explained and showcased with real data, in Chapter 5. This validation involved the 

use case validation, the validation of the Object Detection and Instance Segmentation Model, 

the validation of Auto Annotation, the validation of Deployment and the validation of laser 

scan data of TC200. Once the validation was approved, the end goal of the project was reached 

and all the content described in Chapters 1-5, was concluded at the end of the report, along 

with the Citations and Appendix. 
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1.2 Problem Statement for the Project 

Given is a Traditional Warehouse Setup with a lot of features like shelves, boxes, garbage bins, 

etc. The shelves contain different coloured storage bins as well as other objects and the 

warehouse task involves the detection of certain objects (red- or yellow-coloured bins in this 

use case), in the whole warehouse environment. 

 

The current warehouse management system depends largely on manual labour for the required 

warehouse tasks including the sorting, segmentation and transportation of these colour-coded 

storage bins. The worker would move along all the shelves in the warehouse and would look 

for the desired coloured bins. On detecting the required bins, the worker would then collect 

them and transport them to the desired location. Due to large dependency on manual labour, 

this process is very time-consuming, inefficient and can lead to large human errors, thereby 

resulting in lower productivity.  

 

Therefore, the main aim of the project is to increase the overall productivity of the warehouse 

by decreasing process times, decreasing the large dependency on manual labour and decreasing 

the errors that were very prominent in the case of manual task management. 
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Chapter 2: Literature Review  
 

2.1 Current Implementation of AGVs and AMRs in Warehouses 

In [1] the author talks about the work that was carried out in an automotive company. The main 

objective was to increase the productivity of the last workstation of an assembly line by 

implementing an AGV System to transport finished goods to the warehouse. The ultimate goal 

was the elimination of human-operated transport vehicles like forklifts from the production 

area, boosting not only flexibility but also workplace safety. He talks about the incorporation 

of Lean Manufacturing to eliminate waste and meet customer demands for innovative, cost-

effective products and the implementation of AGVs to automate material handling, optimise 

processes and reduce waste. According to the author, implementing AGV systems enhances 

efficiency and aligns with evolving customer expectations. The implementation of AGV 

technology yielded significant benefits. It eliminated the manual transport of heavy loads by 

operators and reduced excess containers at workstations, thereby improving ergonomics, 

safety, and productivity. Workers no longer needed to handle containers 100 to 150 times per 

shift. Over a full shift, this translated to (i) eliminating the manual transport of 36 to 39 tons of 

material by workers, (ii) reducing worker walking distance by 1.75 to 2.6 kilometers, and (iii) 

saving 50 minutes of travel time. With enhanced safety features, accidents between personnel 

and AGVs were less likely, contributing to overall workplace safety. Additionally, the risk of 

damaged components during transport was minimised. The author in [2] highlights the 

advancements in technology that came with the introduction of AMRs and how they are a huge 

step forward over the current implemented AGVs.  The research done by the author in [2] 

explains that Autonomous Mobile Robots (AMRs) have evolved to meet the growing demand 

for flexibility in various industries. Unlike Automated Guided Vehicles (AGVs), which are 

limited to repetitive tasks, AMRs excel not only in navigation but also in offering diverse 

services. They can handle tasks beyond material transportation, including patrolling and 

cooperating with human operators. With the ability to make independent decisions, AMRs 

provide adaptable solutions.  He concludes by stating that AMR technology advances enhance 

operational flexibility, productivity, quality, and, occasionally, cost-efficiency. Rapid 

implementation is feasible, especially where suppliers have expertise. However, quantifying 

AMR benefits and optimising deployment remains challenging. Simultaneously addressing 

multiple decision variables like vehicle numbers, zoning, service points, scheduling, and path 

planning enhances understanding and promotes balanced decision-making.  Meanwhile, the 

author in [3], extends the scope of AMRs by integrating Internet of Things (such as RFID, 

smart sensors, etc.) and Cyber Physical Systems, that connect via the Internet to communicate 

with each other. According to the author, RFID Technology is one of the most used IoT 

technologies in the warehouses. However, he states that Implementing advanced automation 

systems like warehouse robots with IoT technologies demands substantial investments and 

meticulous strategic and tactical planning. The future holds the promise of widespread adoption 

of highly automated systems that will fundamentally transform warehouse operations. Given 

the evolving warehousing industry landscape, research focused on upgrading existing 

warehouse systems should receive increased attention and consideration. Also, the author 

highlights the importance of Warehouse Sustainability by considering factors like power 

management, the design and operation of the logistics chain and other human factors. He sums 

it all up by concluding that AMRs and smart technological advancements are the next steps for 

any traditional or semi-modern warehouse in order to keep up with the rapid order fulfilment 
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and customer demands, due to the meteoric rise of Ecommerce and competition from other 

industries. 

In conclusion, after going through the various publications, stating the current implementations 

of Robot Technologies such as AGVs and AMRs, it can be said that the introduction of such 

robot technologies have a significant boost on the overall productivity of a warehouse when 

compared to a traditional warehouse, that is completely dependent on Manual labour for the 

completion of warehouse tasks. AGVs and AMRs benefit traditional warehouses by 

automating tasks, reducing manual labour, enhancing safety, and boosting efficiency. AGVs 

handle repetitive tasks, while AMRs offer flexibility and versatility. Both technologies help 

warehouses adapt to modern demands, ensuring competitiveness, faster order fulfilment, and 

sustainability. The integration of Cyber-Physical Systems and IoT Systems such as RFID 

Scanners, enhance the use case and scope of AGVs and AMRs in warehouses, even more.  

Therefore, most of the world has moved to a modern warehouse, from a traditional warehouse 

due to the competitiveness, sustainability and increased productivity that it offers, and this is 

the way to go, if an Industry wants to survive in this competitive environment. The project 

draws motivation from the facts stated above and intends to implement a solution by taking 

into account the capabilities of AMRs in the context of warehouse management. 

 

2.2 Computer Vision in Industrial Automation 

Computer vision is a field of computer science that deals with the extraction of information 

from digital images or videos. It is a type of artificial intelligence (AI) that allows computers 

to "see" and understand the world around them. It is a rapidly growing field with applications 

in a wide variety of areas, including automation, robotics, medical imaging, and self-driving 

cars. 

2.2.1 Traditional vs Deep Learning method of Computer Vision 

 

i. Traditional Methods of using CV in Industrial Automation: 

 

Historically, computer vision in industrial automation relied on conventional 

techniques like image processing, feature extraction, and rule-based algorithms. These 

methods often required extensive manual engineering, making them labour-intensive 

and limited in their adaptability to complex environments. For instance, in quality 

control processes, traditional computer vision systems employ techniques like edge 

detection and colour-based segmentation to identify defects in manufactured goods. 

While effective in certain controlled settings, these methods struggled with variability 

in lighting conditions, object orientations, and occlusions. As a result, their application 

was restricted to specific use cases within industrial automation. 

 

ii. Deep Learning-based Computer Vision for Industrial Application: 

 

The emergence of deep learning has revolutionised the field of computer vision, 

particularly in industrial automation. Deep learning models, specifically Convolutional 

Neural Networks (CNNs), have demonstrated exceptional capabilities in tasks such as 
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object recognition, segmentation, and anomaly detection. In industrial contexts, CNNs 

have been leveraged for tasks like automated inspection, where they excel in learning 

complex patterns and features directly from raw image data. For example, in 

manufacturing, CNNs have been deployed to inspect products for defects, achieving 

higher accuracy rates compared to traditional methods. Moreover, the versatility of 

deep learning allows for transfer learning, enabling models trained on large datasets to 

be fine-tuned for specific industrial applications. This adaptability has significantly 

expanded the scope of computer vision in industrial automation. 

 

2.2.2 Potential of Deep Learning in Warehouse Automation  

  

In an Industrial set-up, traditional methods of Computer vision are still highly relevant in many 

cases [4], such as when there is a small amount of training data available or when the task is 

computationally expensive. However, the implementation of deep learning models in industries 

is increasing exponentially [5]. This is especially true in warehouse settings, where the practical 

applications of deep learning-based computer vision are vast [6]. 

  

• Object Detection and Tracking 

Object Detection identifies objects in an image or video frame, labelling them with a 

class and bounding them with a box. It involves following these objects over 

consecutive frames, maintaining their identity and predicting their future positions. This 

technology is valuable in warehouses for locating and monitoring products, pallets, and 

robots, leading to enhanced efficiency in tasks like order picking and inventory 

management. 

• Scene Understanding 

This can be used to understand the layout of a warehouse and the relationships between 

objects. This information can be used to plan the movement of robots and other 

equipment and to optimise the use of space in a warehouse. 

• Quality Control 

This can be used to inspect products for defects or damage. This information can be 

used to improve the quality of products and to reduce the number of returns. 

• Inventory Management  

It can be used to track the inventory levels of products in a warehouse. This information 

can be used to ensure that the right products are in the right place at the right time. 

• Safety Monitoring 

This can be used to monitor the activities of workers and robots in a warehouse to 

prevent accidents. 

 

Different Deep Learning Models 

When it comes to selecting the right Deep Learning model for object identification in Computer 

Vision (CV), a few key aspects come into play. 

Firstly, the design of the model, known as its architecture, holds great importance. Models like 

Convolutional Neural Networks (CNNs) excel at extracting details from images, making them 
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highly valuable for CV tasks. It's also crucial to strike a balance between speed and accuracy, 

especially in fast-paced scenarios like robotics or augmented reality. Additionally, if your task 

involves pinpointing specific areas or objects in an image (known as semantic segmentation), 

a model adept at predicting masks becomes essential. Considering the depth of the network is 

also important; deeper networks can capture more complex patterns, but they may require more 

data and computing resources. By weighing all these factors, you can select a model that aligns 

with the specific needs of your CV application, ensuring optimal performance and accuracy. 

Various models used for Object identification with key features comparison is in the Table 1. 

 

Feature YOLOv8 SSD Faster R-CNN Mask R-CNN 

Architecture Single-shot 

detection 

Single-shot 

multi-box 

detector 

Region-based 

convMask R-

CNNolutional 

neural network 

Region-based 

convolutional 

neural network 

with mask branch 

Speed vs. 

Accuracy 

Fast with good 

accuracy 

Slower with 

high accuracy 

Slower with high 

accuracy 

Slow with highest 

accuracy 

Real-time 

Applications 

Object 

detection, 

instance 

segmentation 

Object 

detection in 

high-

resolution 

images 

Object detection, 

instance 

segmentation 

Instance 

segmentation 

Mask 

Prediction 

Available in 

YOLOv8 

Not available Not available Available 

Number of 

Stages 

Single-stage Single-stage Two-stage Three-stage 

Key Focus Speed and 

good accuracy 

Balanced 

speed and 

accuracy 

Accuracy and 

detailed object 

detection 

Accuracy and 

instance 

segmentation 

Resource 

Requirements 

GPU/CPU Less 

Demanding 

High-End GPU High-End GPU 

 Real-Time 

Processing 

Yes Yes Yes (with GPU) Not Ideal 

Community 

Support 

Active Active Active Active 

 

Table 1: Comparison of popular Single and Two Stage Object Detectors 
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Yolov8 vs other Yolo Versions 

 

In this comparison, one can assess YOLOv8 in contrast to previous YOLO versions, with a 

focus on aspects such as speed, accuracy, and features. 

 

 

• YOLOv8 has better accuracy than previous YOLO models. 

• The latest YOLOv8 implementation comes with a lot of new features, especially the 

user-friendly CLI and GitHub repo is noteworthy. 

• It supports object detection, instance segmentation, and image classification. 

• The community around YOLO is incredible, just search for any edition of the YOLO 

model and one can find hundreds of tutorials, videos, and articles.  

• Training of YOLOv8 will be probably faster than the other two-stage object detection 

models. [20] 

 

The YOLOv8 model family offers various models based on their size. Here is a comparison 

of the different models [7] in Fig.1 

 

 

 Fig. 1: Comparison of Yolov8 Model based on size 

 

2.2.3 Why Instance Segmentation?  

 

 

• The difference between instance segmentation and object detection techniques is that 

object detectors only detect objects in images. Conversely, instance segmentation 

solutions provide a fine-grained understanding of image data by defining and 

classifying each instance present in visual input. [21] 
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• Robust to occlusion: Segmentation is more robust to occlusion than object detection. 

This is because segmentation does not rely on bounding boxes, which can be easily 

occluded by other objects in the image. [22] 

 

• Accurate for irregular objects: Segmentation is more accurate for irregular objects than 

object detection. This is because segmentation does not rely on bounding boxes, which 

can be difficult to fit around irregular objects. [21] 

 

• Precise Object Localization: Segmentation provides pixel-level accuracy by classifying 

each pixel in an image as belonging to a specific object class or background. This 

precise localization is especially useful when you need to precisely outline the 

boundaries of objects in an image. [23] 

 

2.2.4 Challenges in using Computer Vision  

 

Despite the promising potential of computer vision in warehouse automation, several 

challenges persist. One significant obstacle is the need for robustness in real-world warehouse 

conditions. [5] and [6] discusses the key challenges in using Computer Vision algorithms such 

as: 

  

1. Variability in Environmental Conditions 

2. Complex Object Occlusions: 

3. Generalisation to New Object Types 

4. Real-Time Processing Requirements 

5. Adaptability to Dynamic Environments 

6. Large-Scale Data Acquisition and Annotation 

 

2.3 Proposed Solution 

 

The major drawback of the given problem statement is with its Warehouse Management 

System, which is largely dependent on manual labour. To achieve the aim of increasing the 

overall productivity of this warehouse, the implementation of modern practices and converting 

this traditional warehouse into a Smart/Modern warehouse was a must. 

 

To do so, a comparison between the currently implemented Automation technologies such as 

AMRs or AGVs was conducted, and then the best solution to this Traditional Warehouse 

Management System, which would significantly decrease the task completion time was 

decided, which would lead to fewer errors and would increase the overall Warehouse 

productivity. The factors used for comparison between AMRs and AGVs were: 

 

 

• Navigation Capabilities 

AMRs use LiDAR, cameras, and sensors to navigate and adapt to changing 

environments. They can create maps of their surroundings in real time and plan their 

routes dynamically whereas AGVs typically rely on fixed infrastructure, such as 

magnetic tape, wires, or QR codes, for navigation. They follow predefined paths and 
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require a structured environment to operate efficiently and would fail to function in case 

of change in the warehouse environment. 

• Flexibility to changing Environment 

AMRs are highly flexible and adaptable. They can navigate around obstacles, change 

routes on the fly, and handle dynamic layouts. This flexibility makes them suitable for 

warehouses with frequently changing inventory or layouts. On the other hand, AGVs 

are less flexible and require a more structured and predictable environment. Any 

changes in the warehouse layout may necessitate updates to the physical guidance 

system. 

• Scalability 

AMRs are scalable, and you can easily add or remove robots to match changing 

demand. They can also work collaboratively, making it easier to adapt to varying 

workloads, whereas, expanding an AGV system may involve additional infrastructure 

installation and adjustments, which can be less straightforward than adding AMRs. [8] 

• Safety 

AMRs are equipped with advanced safety features, such as obstacle detection and 

collision avoidance systems, which make them safer to operate around humans and 

other equipment. AGVs can be safe when used in controlled environments but may 

have limitations in terms of safety features compared to AMRs as they don't have an 

intelligence system and in case of an obstacle, it will wait for help, instead of finding a 

way out on its own. [9] 

Taking inspiration from the Literature Review mentioned above, considering the shortcomings 

as well as benefits of the currently implemented techniques, and then comparing both AMRs 

and AGVs, the solution to integrate an AMR with this Traditional Warehouse was chosen 

because it was required not to restrict the solution to the current warehouse layout and that the 

solution will be flexible to future changes as well as be scalable. 

 

Objectives of the Proposed Solution 
 

• Navigating autonomously within the warehouse, while avoiding dynamic as well as 

static obstacles.  

• Moving Holonomically across a feature such as a long shelf, and using Robust 

Computer Vision Algorithm via the camera to detect required coloured bins from that 

feature. 

• Pick up the detected object and place it in a desired location using a Manipulator (future 

scope of the project). 

• Scalability of the Proposed solution, in case the number of features or the layout of the 

warehouse is changed in the near future. 
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2.4 The TC200 Autonomous Mobile Robot 

2.4.1 Description 
 

The Autonomous Mobile Robot utilised in this project is the TC200 by TECDRON Robotic 

Systems, based in France. This robot is a versatile and entirely customizable platform 

specifically tailored for educational and training purposes. Particular emphasis was placed on 

the TC200 due to its implementation of mecanum wheels, also known as Swedish wheels or 

omnidirectional wheels. This feature endows the robot with holonomic motion capabilities, 

making it exceptionally well-suited for tasks within confined spaces with limited manoeuvring 

room. Furthermore, the TC200 offers the flexibility to operate with a differential drive 

configuration if the need arises. 

 

Notably, the TC200 is equipped with mounting provisions and compatibility for articulating 

robots on its top platform, including models such as the Kuka LBR iiwa, Universal Robot 

UR10, and Techman Robot TM12/TM14. Although the integration of a mobile manipulator is 

currently beyond the scope of this project, the capability of this has been proactively accounted 

for, in the future endeavours. This platform can accommodate a substantial payload of up to 

120kg, further enhancing its versatility. 

 

The TC200's locomotion is powered by four brushless electric motors, each equipped with 

individual electromagnetic brakes. This configuration enables the robot to achieve a maximum 

speed of 7.24 kph while delivering a formidable torque of 280 Nm. Notably, each motor is 

outfitted with a high-resolution 2048 ppm encoder, facilitating precise localization and 

mapping due to its closed-loop operation. 

 

For programming and interfacing, the Robot Operating System (ROS) was used, which 

provides a robust and highly adaptable software framework. ROS empowers us to enable 

various autonomous navigation and computer vision functions tailored for industrial 

applications. However, it's crucial to note that the TC200's software and hardware functions 

are entirely dependent on ROS. Consequently, a meticulous bit-for-bit external backup to 

mitigate the risk associated with the potential corruption or unitability of the ROS environment 

has been implemented. 

 

Autonomous navigation, a critical aspect of the project, necessitates accurate environmental 

perception. To achieve this, employment of a pair of Hokuyo LIDARS was done, enabling 

comprehensive scanning and map-building capabilities. Additionally, the TC200 boasts a 

remarkable operational endurance, capable of running continuously for six hours, thanks to its 

51.1V 74.1Ah battery. The TC200 stands as a robust and rugged robotic platform ideally suited 

for warehouse management applications, aligning seamlessly with the objectives of this 

specific project [10]. 

We additionally connected a camera to this AMR for the implementation of Computer Vision 

Algorithms for the detection of different coloured bins on the shelves of the warehouse and for 

extending the future scope of the project, where this camera can be used for object detection 

and other applications. The task of transportation of the detected objects throughout the 

warehouse, to different locations, is a direct extension to the proposed solution and may come 

under the future scope of this project as it was not touched upon in this particular project, due 

to time and other constraints. 
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Fig. 2: TC200 Modular Robot 
 

2.4.2 Locomotion 

The TC200 robot uses mecanum wheels, which are a specialised type of omnidirectional wheel 

commonly used in robotics and industrial applications. They feature a unique design with 

multiple rollers mounted at an angle to the wheel's rotation axis. This configuration allows 

mecanum wheels to achieve omnidirectional movement, meaning they can move a vehicle or 

robot in any direction without the need for complex steering mechanisms. 

In industrial applications like warehouse management and robotics, mecanum wheels offer 

several advantages. Their omnidirectional mobility allows for precise and agile movement in 

tight spaces, making them ideal for navigating crowded warehouse aisles or confined 

manufacturing environments. They enhance the efficiency of material handling and goods 

transportation by enabling robots to move sideways, diagonally, and spin on the spot. 

Although some draw do consist, such as reduced load capacity, limited traction on certain 

surfaces, and increased complexity in control algorithms. Moreover, they tend to be more 

expensive and less energy-efficient than traditional wheels, and their rollers can wear over time, 

potentially requiring maintenance. However, mecanum wheel-equipped robots excel in tasks 

such as autonomous inventory management, goods delivery, and assembly line operations, 

where manoeuvrability and adaptability to changing layouts are critical. Their versatility and 

ease of control make them valuable tools for improving productivity and automation in 

industrial settings. Hence, it is perfect for this use case.  
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2.4.3 Path Planning 

Autonomous navigation in holonomic robots like the TC200, which possess the capability to 

move in any direction without the need for additional rotation, relies on the use of planning 

algorithms. Planners are software systems that generate a sequence of actions to guide a robot 

from its current state to a desired goal state. 

Planners are commonly categorised into two types: global and local planners. Global planners 

are responsible for charting an optimal path from the robot's current position to the goal based 

on pre-existing knowledge of the environment and static obstacles. They employ traditional 

graph search algorithms and necessitate a precise and accurate map for representing 

environmental features. However, they do not take into account the robot’s dynamics or sensor 

uncertainties. Consequently, while they can provide an initial optimal path based on known 

environmental data, they may not be adaptable to sudden changes or unforeseen obstacles [11]. 

On the other hand, local planners come into play by dynamically adjusting the initial plan 

generated by the global planner in real time. They manage the robot's driving dynamics and 

resolve minor conflicts, such as avoiding dynamic obstacles. Local planners generate both a 

trajectory and a velocity profile, which are then transmitted to the robot's actuators. These local 

planners play a vital role in ensuring safe navigation, particularly in dynamic environments like 

warehouses or factory floors [12]. 

In the context of ROS, several local planners tailored for holonomic robots were explored. 

Notably, the "base_local_planner" package within ROS offers parameters specifically designed 

for holonomic robots, enabling them to leverage their omnidirectional movement capability. 

Different local planners exhibit varying trade-offs, including computational demands and 

processing times [13]. 

The base_local_planner operates by continuously assessing the robot's immediate 

surroundings, considering factors such as the current robot pose, the global path, and the 

sensor-derived map of obstacles. Its primary objective is to compute a velocity command that 

directs the robot safely toward its goal while avoiding collisions with obstacles. Moreover, its 

ability to generate trajectories that exploit the full range of motion available to holonomic 

platforms is what makes it especially useful for this project [14]. 

At the heart of the base_local_planner lies the Dynamic Window Approach (DWA), a dynamic 

trajectory optimization algorithm. DWA operates by sampling velocities within the robot's 

control space, encompassing linear and angular velocities. Each sampled velocity is evaluated 

through a forward simulation, predicting the robot's trajectory over a short duration. The critical 

decision-making step is the scoring mechanism, where trajectories are assigned scores based 

on proximity to obstacles, alignment with the global path, distance to the goal, and speed. 

Trajectories leading to potential collisions are promptly discarded, leaving behind the trajectory 

with the highest score as the chosen path. This trajectory's corresponding velocity commands 

are then transmitted to the TC200's mobile base, instructing it on how to navigate effectively 

[15]. 
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The choice of base_local_planner, specifically leveraging the DWA algorithm, is motivated by 

its suitability for holonomic robots like the TC200. It harnesses the robot's omnidirectional 

movement capabilities to swiftly and safely navigate complex environments. Furthermore, its 

integration within ROS ensures seamless compatibility with other system components, 

facilitating a robust and coherent autonomous navigation framework. 

In terms of global planning, NavFn planner was employed, which offered a swift, interpolated 

navigation function that can generate plans for a mobile base. This planner operates on a 

costmap to determine the most cost-effective route from a starting point to an endpoint within 

a grid. 

The navigation function is computed using Dijkstra's algorithm, with potential future support 

for an A* heuristic. NavFn also provides a ROS wrapper for the NavFn planner, adhering to 

the nav_core::BaseGlobalPlanner interface as specified in nav_core. 

The choice of NavFn as the global planner is driven by its efficiency and effectiveness in path 

planning, particularly for holonomic robots. This attribute makes it exceptionally useful in 

intricate environments where the robot may need to navigate around obstacles or through 

narrow passages, such as warehouses and factory floors. 

NavFn operates within a ROS namespace specified during initialization and adheres to the 

nav_core::BaseGlobalPlanner interface found in the nav_core package. It publishes the most 

recently computed plan by NavFn each time the planner calculates a new path, primarily for 

visualisation purposes [16]. 
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Chapter 3: Methodology 

3.1 Use Case Overview 

A typical warehouse interior is given in Fig. 3 where there are some shelves containing 

materials and some random boxes placed. In the context of typical inventory 

management/inventory tracking, in order to get a desired object from the shelf, a warehouse 

worker (human) will have to go to the desired shelf and look for the object. For a larger 

warehouse, this implies that the time complexity increases as there will be more workers 

carrying out similar tasks. This results in an unorganised way of work which is inefficient 

resulting in more time and resources. 

 
 

Fig. 3: Use Case Environment for the Concept 

In Fig. 3, the schematic view of a shelf is given in the circular image at top. It can be seen that 

different types of objects are placed on the shelf. The goal is to use the TC200 robot to find 

objects which are of interest to the warehouse worker. The robot is placed at a parked position 

P. When the warehouse worker needs to track/find an object of interest from the shelves, the 

robot helps to ease the task by going to the shelves marked with numbers (1...5) autonomously 

and then looking for the desired object. This saves time for the worker and also a co-

dependency between the robot and human is established. The operation of the robot can be 

visualised in Fig. 4. 
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Fig. 4: Operation of the Robot 
 

The robot starts from the parked position and then autonomously navigates to the shelf point 

1. After it reaches there, it starts moving parallel to the shelf and simultaneously searches for 

the desired objects. Whenever an object is found, the robot stops momentarily before 

continuing again along the shelf. This process continues until the robot has reached the shelf 

end. After that, the robot moves on to the next shelf autonomously and performs the 

functionalities again. The process of navigating to a shelf autonomously and then searching for 

the objects along that particular shelf until reaching the end of that shelf can be regarded as a 

task. After the completion of all tasks, the robot returns to the parked position using 

autonomous navigation. 
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Based on the specific use case application, the two main features are:  

Autonomous Navigation:  

This feature allows the robot to autonomously navigate between two given map coordinates 

while avoiding obstacles. This is done using the autonomous navigation function which takes 

the destination coordinates as inputs and then uses a global planner to plan a route to the 

destination coordinate. After that, the module employs a local planner to execute the global 

path while avoiding both dynamic and static obstacles. The Autonomous Navigation is also 

kept as a separate functionality to allow the robot to navigate to any random location on the 

map. This function is helpful to determine the shelf locations which will be further discussed 

in Chapter 4: Implementation. 

 

Object Tracking: 

The primary objective is to find objects of interest from a shelf. The shelf could be located at a 

certain location in the warehouse. The robot is at the parked position. Therefore, at first, the 

robot employs the Autonomous Navigation to ensure that the robot autonomously navigates to 

the starting point of the shelf. The shelf starting points are provided by the robot operator which 

acts as the input of this feature. After the robot has reached the shelf, the Object Tracker feature 

starts and moves the robot holonomically such that the robot is perpendicular to the shelf and 

is simultaneously moving parallel. The Object Tracker feature also employs some computer 

vision algorithms to find the objects on the shelf.  

The motion of the robot is put to a halt if either of the three scenarios mentioned below occurs: 

1. The Robot finds an object on the shelf and hence the holonomic motion is stopped 

momentarily to further assess information. 

2. The robot detects an obstacle in the direction of holonomic motion and stops 

immediately. The motion will continue only when the obstacle has been cleared. 

3.  The robot reaches the end of the shelf and stops. 

In the next segment, which is the system architecture, a more detailed explanation of each 

feature along with its sub-modules and their functionalities has been presented. 

 

3.2 System Architecture  

The features of the proposed concept design for the use-case have been further divided into 

sub-modules and are presented in Fig. 5, giving a topological idea of the important modules 

that are used. 
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Fig. 5: System Architecture for Concept Design 

 

3.2.1 Parameter files 

User-defined files that contain the “directions” for the robot to read and execute. The parameter 

files contain the information with respect to each shelf in the warehouse. The robot is provided 

with these files as input which is then read by the “Task Scheduler”. The “Task Scheduler” 

executes the tasks in a sequential order. More details about the structure content of the 

parameter files have been provided in Chapter 4: Implementation. 

3.2.2 Autonomous Navigation 

To accomplish this goal, the robust features offered by ROS (Robot Operating System) were 

leveraged. For autonomous movement from one point to another, the robot employs a 

navigation stack, with “MoveBase” [17] serving as its central component as shown in Fig. 5. 

“MoveBase” integrates multiple algorithms and modules to present a unified navigation 

interface.  

  

 Fig. 6: move_base node overview 

Fig. 5 provides an overview of the move_base node and its interplay with various components. 

Within MoveBase, there is a local planner that interfaces with diverse robot localization tools 

such as AMCL and different array of sensors in IMU (Inertial Measurement Unit for precise 

robot positioning and odometry data. Additionally, the local planner plays a crucial role in 

guiding the robot around obstacles encountered along the way to its intended destination. 

Furthermore, as previously explained the “global costmap” component receives map data from 
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the “map_server”, aiding the robot in charting its course to the designated goal location. The 

global planner operates in accordance with the information contained in the “global costmap”, 

assisting the robot in its journey to a specific destination.   

Global and local planners play a crucial role in performing autonomous navigation by obstacle 

avoidance. A global planner is needed to find a feasible route that considers the overall structure 

of the environment. For that, global planners use different path planning algorithms like the 

grass-fire algorithm, Dijkstra Algorithm, A* algorithm, and many more. The local planner 

operates at a lower level and is responsible for making real-time adjustments to the robot's path 

to ensure safe and collision-free movement. It considers the robot's immediate surroundings 

and dynamically adapts the path as necessary. It is responsible for generating specific control 

commands like velocity and steering by avoiding dynamic obstacles or unexpected changes 

that may not be considered in the global planner. This helps robots to navigate around sudden 

threats.   

As a local planner, the robot uses a DWA (Dynamic Window Approach) planner which allows 

the better holonomic motion of the robot and as a global planner, Navfn is used which utilizes 

the Dijkstra path planning algorithm as this planner strictly adheres to the global plan and 

leading to accurate positioning and navigation.  

Hence, the robot gets the information (x,y, and θ) from the user according to the robot 

coordinate system and moves at the prescribed location in the environment autonomously by 

avoiding obstacles.   

3.2.3 Object Tracker 

As discussed in the use case overview, the robot reaches the shelf start location by Autonomous 

Navigation based on the provided data of (x,y, and θ) by the user. The process overview of the 

object finder function is depicted and explained in Fig. 6:  

 

Fig. 7: Fundamental logic of the Object Tracker 

 

3.2.4 Perception 

A pair of perception sensors integrated into the robotic system, were utilised for perception 

purposes. The initial sensor in the setup is a LIDAR sensor which provides one-dimensional 

data allowing us to ascertain the proximity of objects within the robot surroundings and the 

second sensor is a camera that captures the images of the real environment. 
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3.2.5 Pre-Processing 

These perception sensors are prone to noise. So, to get the effective data, pre-processing is an 

essential part. 

•  Lidar: Incorporating the lidar data in the fitting algorithm involves a transformation 

process where it is converted into the point cloud data which gives the 2-

Dimensional representation of the lidar scan data and converts it into the robot 

coordinate frame to ensure x and y values are consistent to feed in the algorithm. 

More information is provided in section 4.3. 

• Camera: For computer vision, the images are acquired from the camera and then 

pre-processed and then used to feed into the algorithm. More information is provided 

in section 3.3. 

3.2.6 Objective-Based Algorithm 

In this part of the process, based on the objective of both sensors the algorithm is provided.  

• Fitting Algorithm: The pre-processed data  of lidar sensor is introduced into the fitting 

algorithm known as RANSAC which is used for robust estimation of model 

parameters from noisy data allows the removal of noise from the data and fitting the 

data accurately by providing the fitting line, its slope and intercept. The visual 

representation of the fitting line generated by the algorithm is illustrated below:   

 

Fig. 8: General idea of RANSAC algorithm 

 

In the above Fig. 7, it is described that when TC200 reaches in front of the shelf, 

the  RANSAC algorithm comes into play, generating the fitting line based on the 

estimation model leveraging the data collected by the lidar sensors. This data is then 

used to facilitate the alignment of the robot with the wall by using P-Controller. The 

robot achieves parallelism with the wall exclusively when the vector ‘x’ within the 

robot's coordinate system is orthogonal to the vector ‘y’ within the map coordinate 

system. 
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• Computer Vision Algorithm: Camera data after preprocessing is used in the detection 

algorithm to effectively detect the objects. Based on the results from the algorithm, 

the robot achieves the capabilities of detecting the objects and initiating a momentary 

stop. As discussed in part 4.4. 

 

3.2.7 Actuation 

Based on the fitting data, the robot performs its parallel motion along the shelf with the help of 

two proportional controllers where one controls the distance of the robot to the shelf (x-

direction) and second one the orientation of the robot (θ-yaw angle) with respect to the shelf. 

Based on the computer vision algorithm, if the objects are detected and the robot is stopped, it 

displays the information of the number of objects detected and detection accuracy to the user.  

This complete workflow is separated into three modules which can be referred to as the system 

architecture of the entire function presented and explained in Figure 8: 

 

Fig. 9: Object Tracker Architecture 
 

 

•  Parallel Movement 
 

This module is responsible for moving the robot parallel while facing the shelf as well 

as the implementation of different stop conditions based on the situation. This module 

generally uses the RANSAC algorithm and a P-Controller to initiate the parallel motion. 

 

 

• Object Segmentation 
 

This module helps robots detect and identify the objects stored on the shelf while the 

shelf follower module is in active mode. The complete module has been explained well 

in section 3.3.   
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• Task Scheduler 

 

This module enables robots to execute the two previously described modules for a 

specified number of tasks provided within this module. 

 

3.3 Computer Vision and Deep Learning Model 

 

This chapter delves into the foundational pipeline of a deep learning model and outlines the 

various critical steps involved in the process. It provides a comprehensive discussion on how 

to execute these steps effectively. 

 

3.3.1 Pipe Line of a Deep Learning Model 
 

 
 

 

Fig. 10: Basic pipe line of a deep learning model in Computer Vision 

 

 

3.3.2 Creating a Custom Dataset 

 

A custom dataset in computer vision is a dataset that is specifically created for a particular 

application. This means that the images or videos in the dataset are relevant to the specific task 

that the computer vision model is being trained to perform. If custom data sets are not available 

online, then in most cases it has to be generated from scratch. 

 

 

• Image Acquisition 

 

Dataset generation involves capturing or sourcing relevant images that represent the 

specific task or scenario the dataset is intended for. This process may involve using 
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cameras, downloading images from the internet, or utilising other data collection 

methods. 

 

   Points considered while taking images: 

1. Variety of images: Different lighting, Angle of view, the background and the 

pose of the object 

2. Quality of image: Clear and sharp images were taken to highlight the key 

features of the image. Images with some level of noise or low-quality images 

were also taken to imitate the real-world scenario of real-time image 

acquisition.  In Machine Learning training “Garbage In is Garbage Out”. 

3. Adequate quantity: The greater number of images the better the model will 

perform. 

 

 

• Data Annotation 

 

Data annotation is the process of adding human-readable labels to data. This can be 

done for a variety of purposes, such as training machine learning models, creating 

search indexes, or making data more accessible to people with disabilities 

 

 

a. Manual Annotation of Image: Use of manual annotation tools for creating boundary 

boxes or Polygons or masks on the object to be annotated. 

Notable tools: LabelMe, LabelImg, VGG Image Annotator 

 

 

b. Automatic Annotation: 

 

i. Supervised Annotation: It is the process of manually labelling images, and then 

using those labels to train a machine learning model to automatically annotate new 

images. This is the most common approach to image annotation, and it is the most 

accurate way to get high-quality annotations. However, it is also the most time-

consuming and expensive. 

Notable tools: CVAT, Hasty.ai, YAT, AutoML Vision Edge 

 

 

ii. Fully Automatic Annotation: It is the process of automatically annotating images 

without any human intervention. This is a newer approach to image annotation, and 

it is becoming more and more popular as the accuracy of machine learning models 

improves. However, fully automatic annotation is not yet as accurate as supervised 

annotation, and it can be difficult to get high-quality annotations for complex 

images. Deep learning models can be used for fully automatic annotation of the 

image such as Segment Anything Model. 

 

 

• Data Augmentation 

 

Image data augmentation is used in machine learning to improve the performance 

of   models trained on image data. By artificially increasing the size and diversity of the 

dataset, data augmentation can help models learn to better generalise to unseen data.  
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Reasons of doing Data Augmentation:  

 

1. Reduces model overfitting 

2. Makes the model robust to variation 

3. Reduces manual data annotation 

4. A new dataset can be created from the existing dataset  

 

 
 

Fig. 11: Various methods of Data-augmentation 
 

 

3.3.3 Training a Deep Learning Model 
 

There are various methods of training a Deep Learning Model: - 

 

 

1. Training from Scratch  

This is the most common method and involves training the model from scratch on a 

dataset of images with ground-truth annotations. This can be a time-consuming process, 

but it can also lead to the best results. 

 

 

2. Fine-Tuning 

This method involves starting with a pre-trained model and then fine-tuning the model 

on a dataset of images with ground-truth annotations. This can be a faster way to train 

a model, but it may not lead to the best results. 
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3. Transfer Learning 

This method involves starting with a pre-trained model from another task, such as 

image classification, and then fine-tuning the model on a dataset of images with ground-

truth annotations for the new task. This can be a very efficient way to train a model, but 

it may not be as accurate as training from scratch. 

 

 

4. Ensemble Learning 

This method involves training multiple models on different datasets and then 

combining the predictions of the models to get a better overall prediction. This can be 

a very effective way to improve the accuracy of a model, but it can also be a more 

complex and time-consuming method. 

 

Why using transferred learning for training a Yolov8 model on a custom dataset is better:  

• It saves time and resources. Training a model from scratch can be time-consuming and 

computationally expensive, especially if you have a small dataset. Transfer learning can 

help you to save time and resources by reusing the knowledge that has already been 

learned by a pre-trained model. 

• It improves accuracy. A pre-trained model has already learned to extract features from 

images and to classify objects. This knowledge can be transferred to your custom 

dataset, which can help to improve the accuracy of the model. 

• It makes the model more generalizable. A pre-trained model has been trained on a large 

dataset of images, which helps it to generalise to new images that it has not seen before. 

This is important for object detection, as you will often need to detect objects in images 

that are different from the images that the model was trained on. 

 

3.3.4 Deployment of Deep Learning Model on a Mobile Robot 
 

The Trained Deep Learning model is validated and deployed on the Autonomous mobile robot. 

The entire process is orchestrated using the Robot Operating System (ROS). Real-time 

inference is achieved through efficient hardware resources integrated into the mobile robot. 

The trained deep learning model, specifically a YOLOv8 architecture, is fine-tuned on a custom 

dataset, tailored to the unique demands of the warehouse scenario.  

 

This approach not only leverages the pre-trained knowledge but also ensures the model's 

generalizability to handle diverse objects and environments. The ROS-based deployment 

allows seamless communication between various components of the robotic system, ensuring 

effective execution of object detection and tracking tasks in real-world warehouse settings. 
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Chapter 4: Implementation 
 

4.1 Use Case 

In the context of implementation, the modules mentioned in Chapter 3 were developed and 

used to detect and identify bins from the shelf. For the proof of concept, only the bins of red 

and yellow colour were detected. When the robot is performing a task, when it detects and 

identifies an object of interest on the shelf, it displays some metadata that is relevant to that 

respective object such as the confidence score and the number of occurrences of that object. 

Fig. 11 shows the system diagram for implementation purposes. 

 

 
 

Fig. 12: System Architecture for Implementation 

The overall system has been split into two perspectives: 

• External Machine that is running on the User side which runs the modules: Autonomous 

Navigation, bin tracker and task scheduler 

• TC200 Robot side which runs the modules: state machine and image acquisition 

The functionality of the modules described in Chapter 3 remains the same. The reason for this 

specific arrangement in the system diagram is to assert the fact that the system can be scalable 

and run on different user machines. Hence this gives the user a degree of freedom in choosing 

which programs or modules to run on the robot depending on the requirement. As two separate 

ROS machines were running, the communication between the machines took place through 

SSH (Secure Shell) protocol [18]. The GUI which is run on the user side wraps the modules 

discussed in Chapter 3. 
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Fig. 13: Graphical User Interface for Use Case 
 

The basic functionality of GUI according to Figure 13 is defined below: 

1. Autonomous Navigation 

When invoked, asks the user to input x, y and theta of the target location on the map. 

The robot then navigates autonomously to the target location while avoiding obstacles. 

This function is useful if the robot has to travel to a non-shelf coordinate in order to 

perform other tasks. 

2. Object Tracker 

When invoked, it performs the scheduled tasks mentioned in Fig. 9. 

3. Exit 

When invoked, quit the application. 

The next segment gives a detailed explanation of the implementation of the modules wrapped 

by the GUI. 

4.2 Autonomous Navigation 

The overview of the Autonomous Navigation can be obtained by referring to section 3.2.2. To 

implement the Autonomous Navigation, it is necessary to follow a series of steps, which can 

be elucidated as follows: 

4.2.1 Map building or Mapping 

Before implementing the Autonomous Navigation, the prerequisite of mapping must be 

fulfilled. For that reason, the built-in ROS package “Gmapping” is used which uses the data 

from LIDAR scan. The robot is manually driven with a joystick while the gmapping function 
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is active. The environment is explored and a 2D map is formed until the final results are 

satisfactory. This map is later used by the robot as a reference to localise itself using the AMCL. 

4.2.2 Acquiring goal locations 

Autonomous navigation consists of several parts which allow robots to reach specified 

locations. One of the major important parts is the AMCL package. This package is responsible 

for estimating the robot's position and its orientation within the map. It continuously updates 

the robot pose estimates as it moves.   

To acquire the AMCL pose, it is necessary to do mapping as it is an essential part which 

provides robots with fundamental knowledge of the environment. With mapping only AMCL 

can get the reference to compare the sensor data.   

To get the robot’s current location into the environment, AMCL was used, which publishes the 

robot’s position (x,y and z) and orientation (x,y,z and w) which is in Quaternion angles with 

respect to the map frame in the topic “amcl_pose”. The position of the robot (x and y) was 

calculated from the amcl position data but to get the orientation of the robot in an 

understandable manner, the conversion of the data from Quaternion to Euler Angle (θ) was 

required. These coordinates of the robot (x,y and θ) represent the robot's location in the actual 

environment. The robot travelled to different locations on the map, in order to get its 

coordinates on a specific location.   

4.2.3 Travel to the goal location 

After acquiring the coordinates of the goal location, the robot uses the ROS navigation stack 

to reach the destination which is well explained in section 3.2.2.  

 

4.3 Object Tracker   

As discussed in the methodology section, the function consists of two modules: Task 

Scheduler, and object tracker. The Module name Task Scheduler consists of different sub-

modules which are Autonomous Navigation and State Machine. 

4.3.1 Task Scheduler 

This module has been designed to enable the robot to operate in various shelf start locations 

and execute the Autonomous Navigation and Parallel modules by invoking them by setting the 

parameter “enabled 1”. The parameter files are provided to give the capabilities of performing 

these modules on different shelf locations. 

What are Parameter Files? 

The parameter files are provided by the user which provides the task description to the robot. 

The parameter files use the JSON (JAVASCRIPT OBJECT NOTATION) format and 5 

specific information with regards to the shelf is stored.  
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The 5 key pieces of information are: - 

• x-coordinate of shelf start location 

• y-coordinate of shelf start location 

• theta angle of shelf start location 

• shelf length: This parameter also acts as a distance indication for the robot to travel along 

the shelf. The user provides this length of the shelf in meters. 

• Direction: This parameter indicates whether the robot should travel towards right or left. 

The parameter files are stored on the user side and by providing these 5 crucial pieces of 

information to the robot, the task can then begin. 

The sub-modules of the Object Tracker module have been explained below: 

4.3.2 Parallel Movement 

This module manages the robot's lateral movement along the shelves. The section delves into 

the specifics of its implementation and the techniques employed. A detailed explanation of the 

implementation of the RANSAC algorithm, P-Controllers, stop conditions tailored to various 

robot states, and situational factors is provided below.  

RANSAC Fitting Algorithm 

The robot is equipped with two Lidar sensors, strategically positioned at its front and rear ends. 

In real-world scenarios, Lidar data can be susceptible to noise, which may jeopardise task 

execution. To mitigate the risk of failure and render the data suitable for analysis, a crucial pre-

processing step is undertaken. During this pre-processing phase, the data is typically 

transformed to align with the map frame's coordinate system, which inherently differs from the 

robot's coordinate system. This alignment enhances data utility. Subsequently, the Lidar data 

is converted into the robot's coordinate frame for optimal usability. 

The Lidar sensor captures data across a range of 0 to 719 data points. However, for the specific 

task of projecting the fitting line onto the shelf, only a subset of these points is required. To 

achieve this, the Lidar data is meticulously filtered and selected based on its relevance, and 

then it undergoes a transformation into a 2D point cloud format with x and y coordinates. This 

refined data format enhances its efficiency and suitability for subsequent algorithmic analysis, 

where it is used as input. 

The implementation of the RANSAC algorithm is facilitated through the utilisation of the 

"Scikit Learn" machine learning library. This implementation involves providing the algorithm 

with 2D point data in the form of x and y coordinates as input. The RANSAC algorithm, in 

conjunction with the "Scikit Learn" library, is designed to effectively derive the fitting line by 

eliminating extraneous data points that are not relevant to the task.What sets this 

implementation apart is the automation of certain critical aspects. The RANSAC method 

provided by the "Scikit Learn" library is capable of autonomously determining the appropriate 

number of iterations and identifying the inliers for the algorithm. This automated process 

significantly reduces the complexity of parameter selection. 

Ultimately, the RANSAC algorithm, when executed with the "Scikit Learn" library, yields the 

fitting line, complete with its slope and intercept. These output values are subsequently 

employed to orchestrate the parallel motion of the robot along the shelf, aligning it with 
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precision. The explanation and the visualisation of the RANSAC algorithm can be understood 

by the Fig. 8. 

Proportional Controller 

The Lidar data is always changing which results in sudden fluctuations in the results of the 

RANSAC algorithm. This can cause variations in the slope and intercept data which leads the 

robot to have jerks in its motion while performing the tasks. To eliminate the jerks and control 

the distance between the robot and wall (x) and the orientation of the robot (θ) two P-

Controllers have been implemented. One controller aims to correct the error arising from the 

disparity between the target distance from the wall and the intercept. Similarly, the second one 

aims towards the control of robot orientation (θ) where the error definition is the difference 

between the target orientation of the robot which is predefined as 0.0 and the slope. The wheel 

movement is initiated based on this via the “cmd_vel” topic where the velocity limits in the x,y 

and z directions of the robot were provided.   

The mathematical representation of the P controller is elaborated upon in detail in section 5.1.2. 

Within this section, you will find a comprehensive explanation of the controller's mathematical 

formulation and its role in the robot's navigation and control. 

Additionally, various stop conditions have been meticulously implemented to cater to diverse 

scenarios and situations. These conditions enable the robot to make informed decisions about 

when and how to halt its motion based on the specific circumstances it encounters during its 

navigation tasks. This has been explained in the following section. 

Stop Conditions 

During the task execution, there can be some situations where the robot needs to be stopped or 

halt its movement for a while. These situations have been explained in the section 3.1 with 

Object Tracking. To implement these stop conditions, the Lidar data and the Camera data are 

used. To implement the stop condition 2, Lidar data is used where if any object comes near the 

specified range of the robot, 0.0 velocity is published in the “cmd_vel” topic. In the stop 

condition 3, as in the parameter file the shelf distance is already provided. If the shelf distance 

is already reached, the robot stops its movement. Stop condition 1 is implemented based on the 

computer vision algorithm. Robot stops momentarily if the bin is detected in the camera and 

continues its motion after 10 seconds.     

Object Segmentation 

 

This module consists of a computer vision algorithm which provides the mind to the machine 

to detect the bins placed on the shelf. Image acquisition runs on the robot’s computer, takes the 

image of the environment and publishes in the topic which the computer vision algorithm then 

subscribes for data processing. The detailed implementation of this module has been explained 

in further sections of 4.4. 

 

4.4 Computer Vision and Robot Perception 

In this section the entire pipeline following which the instance segmentation model was trained 

and deployed later on a separate computer, is discussed. When the robot moves parallel to the 
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wall during Object Tracker, the algorithm detects the bin and segments it by applying a mask 

on it, and a tracker function keeps a count of the number of bins. 

 

4.4.1 Pipeline of the Instance Segmentation Model 
 

This section gives the pipeline of how the Yolov8 segmentation model is trained and for using 

it as an object identification module on the TC200 robot’s Object Tracker function. The 

complete pipeline used to train the Instance segment model is described in the Fig. 13. 

 

 
 

Fig. 14: Complete pipeline of the implemented Yolov8 Model   
 

The Segment Anything Model (SAM) is a large language model (LLM) developed by Meta 

AI that can segment every object in an image with high accuracy. This makes the model quite 

large and the computing power required to operate it in real time is quite expensive.  

 

As an alternative, the Yolov8 model is used for instance segmentation since this model gives a 

considerable amount of accuracy and real-time operating speeds even with CPU.  

 

The input to the SAM model is a boundary box from the Yolov8 Object detection model.  The 

SAM model gives the corresponding instance segmented mask in txt format, which is later 

used for training the Yolov8 Instance segmentation model. Annotation for instance 

segmentation tasks is quite tiresome and costly, thus this implementation makes the process 

cost and time-effective. 
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4.4.2 Custom Dataset Generation  
 

• Image Acquisition 

 

In this project, various methods of image acquisition were implemented, most images 

were taken from a phone camera, and some images were taken from a webcam of the 

robot to imitate the actual perception of the mobile robot. Other images were 

downloaded to create a varied data set. 

 

Images acquired 300 in total 

Object to be 

detected  

Industrial storage bins  

Class 2 Class: [Red bin] and [Yellow bin]  

Key feature Colour, Shape, Size and Orientation 

Shortcoming No unique pattern or texture on the surface. Only difference between 

two bins is colour 

 

• Data Annotation 

In this project, two different types of annotation were done according to the task. 

a. Boundary box Labelling: For object detection model 

Use the Hasty.ai tool for supervised annotation of Images in .xml format which 

is later converted to YOLO format  

b. Segmentation Mask: For instance, the segmentation model 

The Segment Anything model is employed for swift and precise annotation of 

masks on images. It utilises the boundary box generated by the Object Detection 

model as input to define a Region of Interest (ROI) for tasks related to instance 

segmentation. 

 
                       

 

 

 

 

 

 

 

 

 

 

 

 

 

           Fig. 15: Pipeline of Segment Anything model for Automatic annotation 
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A detailed comparison of various Manual and Supervised annotation tools is in the Appendix 

A1.1 and A1.2 

 

 

• Implemented Data Augmentation 

 

Data Augmentation: 

In this project taking thousands of images of the Bins [Objects to be detected] was not 

a viable option. Thus data augmentation was implemented in two different ways. 

1. Data Augmentation to increase the data set  
 

It is the process of creating new data points from existing ones and adding them to the 

dataset. This can be done by applying the same transformations that are used to augment 

the dataset during training, or by using more creative methods such as generating 

synthetic data.  

 

Problems Reasons Data augmentation 

method 

Lighting 

conditions 

The lighting conditions in a warehouse can vary 

greatly, depending on the time of day, the weather, 

and the location of the warehouse. 

Hue, Brightness, contrast 

(Image enhancement) 

Different 

poses 

The same object can be in many different poses in 

a warehouse. For example, a box can be standing 

upright, lying on its side, or even upside down. 

Rotation, translation, 

scaling, cropping, 

mirroring 

(Geometric 

transformations) 

Fewer 

images 

The number of images available for training a 

mobile robot can be limited. This is especially true 

for objects that are not common in warehouses. 

Also collecting 1000s of images is a tedious 

process. 

Flipping, cropping, noise 

addition, rotation, 

translation, scaling 

  

Occlusion 

  

Objects in a warehouse can often be occluded by 

other objects. This can make it difficult for a 

mobile robot to see the object and identify it. 

Blurring, masking, 

inpainting 

Object size The size of objects in a warehouse can vary 

greatly. This can make it difficult for a mobile 

robot to accurately perceive small objects. 

scaling and cropping 

  

 

Table 2: Use of various Data augmentation along with the reasons 
 

The tools used for data augmentation in this project are Roboflow and Albumenation. 
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Data Augmentation during the Runtime  

 

Data augmentation during runtime is the process of generating new data points on the fly, as 

the model is being trained. This can be done by applying the same transformations that are used 

to augment the dataset during training. 

  

1. hsv_h: This hyperparameter controls the amount of hue augmentation that is applied. 

Hue augmentation changes the hue of the images, which helps the model to learn to 

recognize objects under different lighting conditions. 

2. The copy_paste hyperparameter in YOLOv8 controls the probability of applying the 

copy-paste data augmentation technique. A simple Copy-paste is a strong method of 

data augmentation for instance segmentation [19]. 

3.  It is a technique that copies and pastes a portion of one image onto another image. This 

can be used to create new images that contain objects in different poses and locations. 

 

Command to Train the model in Google Colab environment: With data, augmentation 

parameters passed as arguments: 

 
!yolo task=segment mode=train model=yolov8s-seg.pt data=..//Path to custom yaml file// epochs=35 

imgsz=640 copy_paste=0.7 hsv_h=0.2    
 
    
4.4.3 Training of Yolov8 model on Custom Data 
 

Yolov8 model is trained for two specific tasks in this project:  

 

 

1. Object detection: This model is trained to give Boundary box of the objects as input to 

the SAM model 

2. Instance Segmentation: This model is trained to do real-time instance segmentation of 

the objects (industrial storage bins) by the mobile robot. 

 

Steps Involved in training the Yolov8 model: 

 

 

1. Install the package named “ultralytics”  

2. Organise the folder structure for:  

 

a. Training dataset [70-80% images of the entire dataset with its labels] 

b. Validation set [20-30% images of the entire dataset with its labels] 

c. Test dataset [Images / Videos /real-time testing]  

d. Configuration files: It contains the path to these data set and declaration of 

the objects to be detected in class in a yaml file 

 
path: (dataset directory path) 
train: (Complete path to dataset train folder) 
test: (Complete path to dataset test folder) 
valid: (Complete path to dataset valid folder) 

 
#Classes 
nc: 2# update for the total number of classes to be detected 
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#classes names 
#add new class names here 
names: ['Red Bin', 'Yellow Bin'] 

 
#various default hyperparameters can be declared and modified 
Hyperparameter: 

 

 

3. Training process 

 
yolo task=seg mode=train model=yolov8s-seg.pt data=custom.yaml epochs=35 imgsz=640 
 
task = segment [could also be detect or classify] 
mode = train [could also be predict or val] 
model = yolov8s-seg.pt (small) [could also be nano, medium or large model] 
epoch = 35 (depends on dataset and model result) 
imgsz = 640 (image size: multiple of 32) 
 

How to Increase the Class dataset? 

 

In order to detect more objects increase the class dataset was required, which was quite a 

straightforward process: 

 

1. Collect New Data 

 

Collect images that feature objects from the new class. If possible, capture images that 

include both old class and new class objects. If not, employ data augmentation 

techniques to blend old and new class objects together. 

 

2. Annotate Data 

 

Annotate the new class's objects in the images by drawing bounding boxes (for Object 

Detection). For Instance, segmentation, and mask annotation by SAM model can be 

used. 

 

3. Update Class List 

 

Modify the YOLO configuration file to include the new class in the class list, and add 

the class name to the names file. 

 

4. Combine Datasets 

 

Integrate the new class's annotations and images with your existing dataset while 

preserving the YOLO annotation format. 

 

5.   Retrain the Model  

 

Continue training your YOLO model using the combined dataset, starting from scratch 

or fine-tuning the existing model with the new data. 
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6. Evaluate and Tune 

 

After training, assess the model's performance on a validation set, making necessary 

adjustments to hyperparameters for optimization. 

 

7. Test and Deploy 

 

Assess the model's performance with the new class obe declared test dataset, and if 

successful, deploy it for desired applications. 

 

4.4.4 Deployment on the Robot  

 
Fig. 16: Communication of Object tracker with the Robot 

 

 

• Deployment on the TC200 Robot 

 

The Object Tracker algorithm operates on a distinct computer on the user side quipped 

with the custom Yolov8 Instance segmentation model. The TC200 Robot is linked to 

this computer through an SSH communication protocol within the same network. 

Communication between the Robot (TC200) and the external computer follows a 

publisher-subscriber model, facilitating the transmission of images from the camera 

mounted on the robot to the user computer.  

 

The computer, where the Object Segmentation algorithm and Object tracker functions 

are active, dispatches an actuation signal to the robot to execute a stop command upon 

detection of the desired object. 

 

• Object Tracker function 

 

For counting multiple objects in the image and to track if the object has crossed a 

particular ROI in the image a SORT tracker is implemented. SORT is a simple online 

and real-time tracking algorithm for 2D multiple object tracking in video sequences. 
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This function keeps and updates the counter for total instances of Object detection, red or 

yellow bin. As the robot moves parallel to the shelf the objects in the image move backwards 

(relative to the robot) thus crossing a centre ROI of the frame. This updates the tracker function 

and gives a stop command to the robot. 
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Chapter 5: Validation 

                                                                                                                

5.1 Autonomous Navigation Modules 

 

5.1.1 Validation of Laser Scan 
 

The TC200 robot, in this specific use case, is meant to be used in industrial applications like 

warehouse management. Here, the LIDARs on the TC200 are deployed for various tasks such 

as obstacle avoidance, path planning, mapping, etc. These applications rely on the precise and 

reliable data provided by LIDAR sensors. Standard deviation plays a critical role in assessing 

the quality and reliability of the data obtained from these systems. 

LIDAR sensors emit laser beams and measure the time it takes for these beams to bounce off 

objects and return to the sensor. By analysing the time-of-flight or phase shift of the returning 

laser pulses, LIDAR creates point clouds that represent the spatial distribution of objects and 

surfaces in the environment. These point clouds are used for various purposes, including 

mapping, obstacle avoidance, and object recognition. 

The standard deviation in a LIDAR laser scan provides insights into the dispersion of individual 

data points within the scan. In the context of industrial warehouses, a low standard deviation is 

desirable because it indicates that the measurements are closely clustered around the mean 

distance value. This high precision is crucial for tasks such as: 

Obstacle Detection and Collision Avoidance: The TC200 operating in warehouses needs 

precise distance measurements to navigate safely and avoid collisions with obstacles. A low 

standard deviation ensures that the LIDAR data accurately represents the distances to objects, 

reducing the risk of collisions. 

 

Path Planning: The TC200 also uses LIDAR data to plan its paths efficiently. Low standard 

deviation in laser scans leads to more accurate mapping of the environment, enabling precise 

path planning and optimization of logistics operations. 

 

In order to validate the laser scan, the TC 200 was allowed to perform a scan in the respective 

environment. During this time, the laser scan is published to the “/merged_cloud” topic. 

However, this data is raw and is collected from the entire environment. This is unneeded and 

unusable. Hence, this data is then converted to point cloud data through Point Cloud Library 

(PCL) and is now in the form of x, y, and z coordinates through a point generator. Moreover, 

the scan is then limited to identifying just the wall component in the environment and ignoring 

all other objects. This is done by limiting the scan range of the x and y components. Any points 

landing between x of -1.5 and +1.5 and y of -1.2 and +1.2, are considered fallen on the wall. 

Hence only those points are then further processed. Furthermore, the points are then compared 

against the best fit line created by a RANSAC algorithm. Following the RANSAC regressor, 

the best-fitting line is fit against the point cloud of the wall. This is how the robot recognises a 

wall and travels parallel along it. Therefore, as previously mentioned, a certain few parameter 

can be used to understand how consistent and accurate this line is. For this, three parameters 

are used. Their importance as well as their interpretation for this specific validation is as 

follows: 
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1. Mean (Mean Error): 

 

• Importance: The mean error represents the average discrepancy between the observed 

laser points and the points predicted by the RANSAC line. It's a measure of how well 

the line approximates the data on average. 

• Interpretation: A lower mean error indicates that, on average, the laser points are closer 

to the RANSAC line. This suggests a better fit to the data. 

 

 

2. Root Mean Square Error (RMSE): 

 

• Importance: RMSE measures the square root of the average of the squared errors 

(residuals). It provides an overall assessment of how well the RANSAC line fits the 

laser points. 

•  Interpretation: A lower RMSE signifies that the laser points are, on average, closer to 

the RANSAC line. It's a more comprehensive metric than the mean because it considers 

the magnitude of errors. 

 

 

3. Standard Deviation: 

 

• Importance: Standard deviation measures the spread or dispersion of the residuals from 

the RANSAC line. It indicates how consistent or variable the errors are. 

• Interpretation: A lower standard deviation suggests that the residuals are more tightly 

clustered around the RANSAC line, indicating a more consistent and accurate fit. A 

higher standard deviation indicates greater variability or scatter. 

 

In overall terms, Mean provides insight into the overall bias or average error in the fit. RMSE 

offers a comprehensive assessment by considering errors' magnitude and direction. Standard 

Deviation gives information about the spread or consistency of errors. 

 

The average values for the corresponding metrics are shown in the Table: 

 

Parameters Drywall Glossy Door Metal Shelf 

Mean 0.000693 -0.0498 -0.0013 

RMSE 0.004171 0.3497 0.0154 

Standard Deviation 0.004129 0.3462 0.0153 

Minimum Error -0.0122 -1.0720 -0.0291 

Maximum Error 0.0131 0.4426 0.0265 

 

Table 3: Deviation parameters categorised by wall material 

 

It is inferred that the RMSE and the Standard deviation for all the environments were always 

either the same or very close in value. This may be due to symmetrical residual distribution. 

This means the points falling on the wall are equally likely to be on either side of the RANSAC 
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line. If there is no significant directional bias in the errors, it means that the RANSAC line 

provides a good overall fit to the data, and errors in both positive and negative directions are 

distributed fairly evenly. This checks out considering these are good environments for LIDARs 

and laser scan output.  

 

Moreover, from Table 3, it can be observed that the Drywall was the best environment for laser 

scan outputs. It is ideal due to its matt, non-reflective finish. On the other hand, the glossy door 

happens to be the worst of the three environments with the highest deviation. It is especially 

notable that the minimum error is very outlandish because it is very likely a reflected laser 

point from the glossy door. The metal shelf is also not as good as the drywall but acts as a 

suitable yet unideal middle environment. However, it appears the reflections are not an issue 

here, likely due to the matt finish of the shelves. This study shows the effectiveness of the 

Hukoyu LIDARs that are used by the TC200 and their vulnerability to the respective 

environments in which it is placed. Hence, the best results can be expected when the walls of 

the environment are smooth, non-reflective and matt-coated.  

 

 
Fig. 17: Error Chart of Mean and Standard Deviation of Laser Points 

 

5.1.2 Validation of P Controller 

The validation of the Proportional controllers used in this specific use case implementation is 

done by tracking the trajectory of the TC200 robot while using the two P controllers that were 

elaborated in section 4.3.2 above. For this purpose, the robot was loaded in a warehouse 

environment and was then programmed to move parallel to a long shelf, holonomically by 

giving a Linear Velocity in the y-direction of TC200.  

 

During this type of movement, the first P Controller came into action and the error caused by 

the disparity between the target distance of the robot from the wall, set by the user, and the 

intercept of the best-fit line arising from the RANSAC Algorithm fit line, was controlled by a 

Proportional Gain value (Kp_distance) of -0.5, which was multiplied by the distance error. This 
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value was given to the Linear Velocity of the robot in the X-direction, in order to control the 

robot's distance from the wall. 

 

The second P Controller controlled the robot orientation (θ) where the difference between the 

target orientation of the robot, which is predefined as 0.0, and the slope arising from the best-

fit line from the RANSAC Algorithm. This difference in the orientation angle of the robot is 

then controlled by multiplying the angle error by a Proportional Gain value (Kp_angle) of 0.5. 

This value was given to the Angular velocity of the robot in z-direction, in order to control the 

robot orientation. 

 

These values of the Proportional Gains for both the P controllers were fine-tuned, so that the 

robot moves smoothly, without exhibiting noticeable oscillations during the robot movement. 

 

 

• For P Controller 1:- 

 

Distance Error (delta_distance) = target distance - distance from the wall at that 

instance  

Kp_distance = - 0.5 

linear_vel_x = kp_distance * delta_distance 

 

 

• For P Controller 2:- 

 

Angle Error (delta_angle) = target orientation angle - orientation angle at that instance 

Kp_angle = 0.5 

velocity_msg.angular.z = angular_vel 

 

 

The plot below, Fig. 18, shows the trajectory the TC200 Autonomous Mobile Robot exhibits 

when moved holonomically along the shelf, in a warehouse environment. The combined effect 

of both the Proportional Controllers, controls the robot's movement to be fixed at a particular 

distance to the wall of the shelf and be in a desired orientation, such that the camera mounted 

on the robot, faces the wall of the shelf at every instance, in order to detect the desired objects, 

while the robot moves holonomically along the shelf.  

 

The Actual Trajectory plot is generated by subscribing to the ‘odom’ topic of TC200 to get the 

positions in x and y along with the orientation of the robot and then plotting the positions as 

plot.plt and orientation as plot.scatter. The Ideal plot of TC200 is generated by subscribing to 

‘/front/scan’ topic of LIDAR sensor, to get the ranges of laser scan according to the real world. 

Some small peaks in the Ideal Trajectory plot are due to some disturbances in the environment. 
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Fig. 18: Actual and Ideal Trajectory of TC200 during Use Case Implementation 

 

From both the plots, it can be observed that the Actual Trajectory of TC200 while moving 

parallel to the shelf denoted by the straight laser scan data in the Ideal Trajectory plot, is not as 

expected. There is a slight deviation from the start to end point of the actual trajectory, when 

compared to the actual trajectory of TC200. Due to the disturbances in the environment, there 

are deviations in the LIDAR data that is used in the RANSAC algorithm. As the slope and 

intercept of the best-fit line are used in the P controllers, as mentioned above, we observe this 

actual trajectory instead of a smooth parallel line. But still, the P controllers do a good job in 

controlling the orientation angle as well as the distance between robot and target wall. 

 

5.2  Computer Vision Module 

 

5.2.1 Validation of Object Detection Model 
 

To validate the object detection model, experiments with three training datasets were 

conducted, each comprising 100, 150, and 250 images. Consistent object instance ratios were 

maintained and included 15-20% background images in each dataset. Various augmentation 

techniques were applied during training to assess their impact on performance. 

 

Validation Dataset Number of Images Red Bin Instances Yellow Bin Instances 

Validation 35 36 38 

 

 

End Point Start Point 

Start Point End Point 
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Test Dataset Number of Images Red Bin Instances Yellow Bin Instances 

Test 15 22 26 

 

Table 4: Validation and test data set  
 

 

To interpret the results, please refer to the following explanation of the validation parameters: 

 

• 1) and 2) rows represent the percentage of correct detections for red and yellow bin 

instances in the test dataset. 

• 4) and 5) rows indicate the percentage of correct detections for red and yellow bin 

instances in the validation dataset. 

• 3) row signifies instances where the background was mistakenly identified as 

Red/Yellow on the test dataset. 

• 6) row denotes instances where the background was erroneously identified as 

Red/Yellow on the validation dataset. 

 

 
 

Table 5: Object detection model training validation on different number of images 

 

As the size of the training dataset was expanded, a notable improvement in true positive object 

detection rates, rising from approximately 92-97% to a perfect 100% for both the test and 

validation datasets, was observed. Concurrently, the rate of false background detections 

diminishes with the increasing number of training images.  

 

In the final two columns of the analysis, a comparison of the results obtained using different 

augmentation techniques was conducted. It became evident that in comparison to combining 

copy-paste and hue augmentation, employing only copy-paste augmentation yields favourable 

outcomes. 
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5.2.2 Validation of SAM Model Annotations  
 

 
1. Validation on Test Dataset 

 

Since the Segment Anything model auto annotates the image for mask labels, its result 

must be validated to ensure that the correct labels are sent for training the Yolov8 

Instance segmentation model. 

 

  

  
 

Fig. 19: Result of SAM auto annotation on boundary box input 
 

SAM's auto annotation proves highly effective when the Object Detection (OD) model 

provides accurate labels, especially in complex images with numerous objects and 

intricate arrangements. This success highlights SAM's potential as a valuable tool for 

segment label annotation. However, there is still room for improvement in the OD 

model to enhance the accuracy of generated boundary boxes. 

 

2. Validation in Real Time on TC200 

 

Despite being slow for real-time implementation with a frame rate of 10 - 12 fps, The 

SAM model does accurate annotation and creates a well-defined boundary/mask 
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Fig. 20: Validation of Auto Annotation from SAM in real time 

 

 

3. Outliers in SAM model Annotation 

 

      
Fig. 21: Outliers in Auto Annotation by SAM model 

 

Occasionally, SAM encounters challenges in producing perfect segment annotations 

around objects when the Object Detection (OD) model's annotations are subpar or there 

is a substantial variation in brightness and contrast on the object due to lighting 

conditions and shadow. This issue becomes evident when examining certain sample 

images as references. After a rough estimation, it appears that this type of problematic 

image accounts for approximately 2-3 percent of the entire dataset. 

 

5.2.3 Validation of the Instance Segmentation Model 
 

In this validation process, rigorous evaluation of the model's ability to correctly segment 

objects of interest from their backgrounds, determining its accuracy, robustness, and 

generalisation capabilities was done. By meticulously examining a range of parameters, 

metrics, and visualisation techniques, valuable insights into the model's strengths and 
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weaknesses were gained. In this section, a comprehensive analysis of the YOLO segmentation 

model's validation is presented. 

 

Confusion matrix: 

 

A confusion matrix is a visualisation that shows how your model is performing in the classes 

in which it was trained. This validation was carried out on 140 images. The rows of the 

confusion matrix represent the true labels of the objects in the dataset, while the columns 

represent the predicted labels of the objects in the dataset. The off-diagonal elements of the 

confusion matrix represent the number of objects that were misclassified. The diagonal 

elements of the confusion matrix represent the number of objects that were correctly classified. 

The confusion matrix in Fig. 21 shows that the instance segmentation of the object on the 

validation data set is very good, there are very few false detections. 

 

 
 

Fig. 22: Confusion matrix of Instance Segmentation Yolov8 custom model 

 

 

Precision-Recall Curve: 

 

A precision-recall curve to assess the trade-off between precision and recall at different 

confidence thresholds. A good model should have a curve that approaches the upper-right 

corner. 
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Fig. 23: Precision Recall graph of training the Instance Segmentation model 
 

 

Loss Curves: 

 

The loss curve shows how the model's loss changes over time during training and validation. 

Initially, the loss may be high as the model starts with random weights, but it should decrease 

as the model learns from the data. 

 

 
 

Fig. 24: Various Loss curves of training the Instance Segmentation model 
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Validation of Instance Segmentation model on Test Images: 

 

 

  
 

Fig. 25: Validation of instance segmentation on test images 
 

Result: 

   

Test Dataset  30 images 
 

Red_bin instances 45 instances 45 instances detected 

Yellow_bin instances 47 instances 47 instances detected 

 

Table 6: Validation of instance segmentation on test images 

 

The test dataset comprised both intricate scenarios featuring multiple stacked bins in a new 

environment and straightforward images. Remarkably, the instance segmentation model 

consistently and accurately identified all the bins without any false detections when the 

confidence threshold was set at 60%. This level of performance demonstrates the model's 

robustness. 

 

Validation of Instance Segmentation Modelon Videos 

 

The model worked well with video with videos shot from a mobile phone, the percentage of 

false detection was roughly 2-3% and around 1% of frames had no detection even though the 

object was present. 

 

This was validated by taking multiple videos and then running it on the instance segmentation 

model, The number of total frames was counted and the number of detection frames was 

counted. The Frames per second were around 10-12 fps, when the model detects objects it 

drops to 7-8 fps. due to processing. 
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5.2.4 Validation of SORT Tracker in Use Case 
 

To validate the performance of the tracker the model was run on the robot in real time. The 

robot was run at different speeds and different numbers and sizes of the bins were detected to 

evaluate the robustness of the tracker. The readings were taken over 5 cycles for each speed. 

 

Robot Speed 1 large bin 1 small bin 3 bins 5 bins 

0.04 m/s 100% detection 100% detection 100% detection 100% detection 

0.06 m/s 100% detection 100% detection 100% detection 92% detection  

0.07 m/s 80% detection 60% detection 73% detection 64% (detection) 

0.08 m/s 60% detection 40% detection 33% detection 36% (detection) 

 

Table 7: Validation of instance segmentation model on the robot in Real time  
 

The findings indicate that as the speed of the robot escalates, the tracker's capacity to identify 

and stop the robot for the object reduces gradually. Optimal detection is achieved at speeds of 

up to 0.06m/sec. This phenomenon can be attributed to factors like the number of frames, 

lighting conditions, and field of view, among others. 
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Chapter 6: Conclusion 
 

In conclusion, this project represents a significant leap forward in the realm of warehouse 

management systems, offering a holistic solution to address the challenges faced by traditional 

setups. The project's multifaceted approach has encompassed several critical components, each 

contributing to its overall success. 

 

First and foremost, the utilisation of the TC200 Autonomous Mobile Robot (AMR) brings 

autonomous navigation to the forefront. This enables the robot to autonomously traverse the 

warehouse, deftly avoiding obstacles while optimising path planning. By automating 

navigation, this project eliminates the need for manual laborious tasks and reduces the risk of 

human errors, significantly enhancing warehouse productivity. 

 

Object tracking, the project's second key component, leverages advanced computer vision 

algorithms and sensors like a camera and LIDAR to precisely detect and monitor objects, 

particularly coloured storage bins. This innovation streamlines the retrieval process, making it 

faster and more efficient. It also minimises errors in object identification, contributing to the 

project's overall accuracy. 

 

Moreover, the project's scalability factor ensures that it remains adaptable to ever-evolving 

warehouse layouts and increasing demands. This flexibility positions it as a future-ready 

solution, capable of evolving in tandem with the dynamic nature of modern warehouses. 

 

Safety, an essential aspect of any industrial setting, is paramount in this project. The TC200 

AMR incorporates cutting-edge safety features, including obstacle detection and collision 

avoidance systems. This emphasis on safety ensures seamless collaboration between human 

workers and autonomous robots, minimising the risk of accidents and injuries. 

 

The current implementation of the use case extends to future possibilities and the scope of the 

overall project. The introduction of a Robotic Manipulator Arm, mounted on the top of the 

TC200 AMR, enables the picking and placing capabilities for the mobile robot, which is the 

natural extension to the achieved solution, for the use case. Also, the mounted camera opens 

the possibilities for endless advancements, beyond the scope of the project. Sophisticated 

Computer vision models like the Segment Anything Model can be clubbed with natural 

language processing. This innovation eliminates the need for an expanded image dataset, as 

user-provided text or speech prompts can effectively drive the instance segmentation process. 

This forward-thinking approach promises to elevate the project's potential impact and 

relevance in industrial automation 

 

All in all, the project's contribution to the industry is substantial. It exemplifies the potential of 

advanced automation and robotics in revolutionising warehouse management systems. By 

reducing reliance on manual labour, the project optimises productivity, reduces errors, and 

enhances overall efficiency. It sets a benchmark for future endeavours in the field, emphasising 

the importance of flexible and adaptive automation solutions in modern warehousing. 
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Appendix  
 

A 1.1 Comparison of popular Manual annotation tools 

 

Feature LabelMe LabelImg VGG Image 

Annotator (VIA) 

Platform Web-based Desktop Web-based and 

Desktop 

Open Source Yes Yes Yes 

Annotation Types Polygon, 

Rectangle 

Rectangle, 

Polygon 

Polygon, Rectangle, 

Point 

Export Formats JSON, XML, 

Others 

PASCAL VOC, 

YOLO 

JSON, CSV, Others 

Customizable Labels & Multi 

class support 

Yes Yes Yes 

Offline Availability No Yes Yes 

GitHub Maintained         Yes Yes Yes 

Community Support Active Active Active 

Documentation Available Available Available 

User Interface Web-based UI GUI Web-based UI and 

Desktop UI 

Ease of Use Moderate Easy Moderate 

Updates and Maintenance Varies Varies Active 
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A 1.2 Comparison of popular Supervised annotators: 

 

Criteria CVAT 

(Computer Vision 

Annotation Tool) 

Hasty.ai YAT AutoML Vision 

Edge 

Annotation 

Types 

Bounding Boxes, 

Polygons, Key 

Points, Lines, etc. 

Bounding 

Boxes, 

Polygons, 

Points, Lines, 

etc. 

Bounding 

Boxes, 

Polygons, 

Lines, Points, 

etc. 

Various 

Ease of Use Intuitive and 

feature-rich 

User-friendly 

with AI 

assistance 

Moderate Moderate 

Automation Manual, but 

supports semi-

automation 

AI-assisted 

annotation 

AI-assisted Yes 

Auto 

Annotation 

Not available Available Available Available 

SAM 

Support 

Limited Limited Limited Yes 

Export 

Formats 

Common formats 

(COCO, Pascal 

VOC, etc.) 

Common 

formats 

(COCO, VOC, 

etc.) 

Common 

formats 

(COCO, Pascal 

VOC, etc.) 

Common formats 

(COCO, Pascal 

VOC, etc.) 

Cost Free and open-

source 

Pricing 

available upon 

request 

Pricing 

available upon 

request 

Pricing available 

upon request 

Platform Web-based (self-

hosted option ) 

Web-based Web-based Web-based 

GitHub 

Maintained 

Yes Yes Yes Not specified 

Scalability Suitable for small 

to medium 

datasets 

Supports large 

datasets 

Supports large 

datasets 

Suitable for small 

to medium 

datasets 

Community 

and Support 

Active user 

community and 

documentation 

Availability of 

support 

Availability of 

support 

Limited 

documentation 

 


